摘 要
大体积混凝土结构在现代土木工程中应用广泛,如桥梁、水坝等,但其温度裂缝问题严重影响结构的耐久性和安全性。为解决这一难题,本研究旨在探索有效的温度裂缝控制技术。通过理论分析与数值模拟相结合的方法,深入研究了大体积混凝土内部温度场的分布规律及其对裂缝形成的影响机制。基于此,提出了以优化配合比设计为基础,结合冷却水管布置和表面保温措施的综合控制策略。研究发现,合理的配合比能够降低水化热峰值,科学布置冷却水管可有效带走热量,而适当的表面保温则能减小内外温差。创新性地建立了考虑多种因素耦合作用下的温度应力预测模型,该模型精度较高且适用性强。此外,还开发了一套适用于施工现场的实时监测系统,可及时反馈混凝土内部温度变化情况,以便调整施工方案。研究成果不仅为大体积混凝土温度裂缝的预防提供了理论依据和技术支持,而且对提高工程质量、延长结构使用寿命具有重要意义。
关键词:大体积混凝土;温度裂缝控制;配合比优化
Abstract
Massive concrete structures are widely applied in modern civil engineering projects such as bridges and dams, yet the issue of temperature-induced cracking significantly compromises their durability and safety. To address this challenge, this study aims to explore effective temperature crack control technologies. By integrating theoretical analysis with numerical simulation, the distribution patterns of internal temperature fields within massive concrete and their influence mechanisms on crack formation have been thoroughly investigated. Based on these findings, a comprehensive control strategy has been proposed, which is grounded in optimized mix proportion design, combined with the arrangement of cooling water pipes and surface insulation measures. It was found that a rational mix proportion can reduce the peak hydration heat, scientifically arranged cooling water pipes can effectively dissipate heat, and appropriate surface insulation can decrease the temperature difference between the interior and exterior. An innovative temperature stress prediction model considering the coupled effects of multiple factors has been established, demonstrating high accuracy and strong applicability. Additionally, a real-time monitoring system suitable for construction sites has been developed, capable of promptly reflecting the internal temperature changes of concrete to facilitate timely adjustments to construction plans. The research outcomes not only provide theoretical foundations and technical support for preventing temperature cracks in massive concrete but also hold significant implications for enhancing engineering quality and extending structural service life.
Keywords:Mass Concrete;Temperature Crack Control;Mix Proportion Optimization
目 录
摘 要 I
Abstract II
引 言 1
第一章 大体积混凝土温度特性分析 2
1.1 温度场形成机理研究 2
1.2 混凝土水化热特性 2
1.3 环境温度影响因素 3
第二章 温度裂缝成因探究 4
2.1 应力与变形关系 4
2.2 材料性能对裂缝的影响 4
2.3 施工工艺相关因素 5
第三章 温度裂缝控制措施 6
3.1 原材料选择优化 6
3.2 配合比设计改进 6
3.3 施工过程温控技术 7
第四章 工程应用与效果评估 8
4.1 实际工程案例分析 8
4.2 控制效果监测方法 8
4.3 经济效益与社会效益 9
结 论 10
参考文献 11
致 谢 12
大体积混凝土结构在现代土木工程中应用广泛,如桥梁、水坝等,但其温度裂缝问题严重影响结构的耐久性和安全性。为解决这一难题,本研究旨在探索有效的温度裂缝控制技术。通过理论分析与数值模拟相结合的方法,深入研究了大体积混凝土内部温度场的分布规律及其对裂缝形成的影响机制。基于此,提出了以优化配合比设计为基础,结合冷却水管布置和表面保温措施的综合控制策略。研究发现,合理的配合比能够降低水化热峰值,科学布置冷却水管可有效带走热量,而适当的表面保温则能减小内外温差。创新性地建立了考虑多种因素耦合作用下的温度应力预测模型,该模型精度较高且适用性强。此外,还开发了一套适用于施工现场的实时监测系统,可及时反馈混凝土内部温度变化情况,以便调整施工方案。研究成果不仅为大体积混凝土温度裂缝的预防提供了理论依据和技术支持,而且对提高工程质量、延长结构使用寿命具有重要意义。
关键词:大体积混凝土;温度裂缝控制;配合比优化
Abstract
Massive concrete structures are widely applied in modern civil engineering projects such as bridges and dams, yet the issue of temperature-induced cracking significantly compromises their durability and safety. To address this challenge, this study aims to explore effective temperature crack control technologies. By integrating theoretical analysis with numerical simulation, the distribution patterns of internal temperature fields within massive concrete and their influence mechanisms on crack formation have been thoroughly investigated. Based on these findings, a comprehensive control strategy has been proposed, which is grounded in optimized mix proportion design, combined with the arrangement of cooling water pipes and surface insulation measures. It was found that a rational mix proportion can reduce the peak hydration heat, scientifically arranged cooling water pipes can effectively dissipate heat, and appropriate surface insulation can decrease the temperature difference between the interior and exterior. An innovative temperature stress prediction model considering the coupled effects of multiple factors has been established, demonstrating high accuracy and strong applicability. Additionally, a real-time monitoring system suitable for construction sites has been developed, capable of promptly reflecting the internal temperature changes of concrete to facilitate timely adjustments to construction plans. The research outcomes not only provide theoretical foundations and technical support for preventing temperature cracks in massive concrete but also hold significant implications for enhancing engineering quality and extending structural service life.
Keywords:Mass Concrete;Temperature Crack Control;Mix Proportion Optimization
目 录
摘 要 I
Abstract II
引 言 1
第一章 大体积混凝土温度特性分析 2
1.1 温度场形成机理研究 2
1.2 混凝土水化热特性 2
1.3 环境温度影响因素 3
第二章 温度裂缝成因探究 4
2.1 应力与变形关系 4
2.2 材料性能对裂缝的影响 4
2.3 施工工艺相关因素 5
第三章 温度裂缝控制措施 6
3.1 原材料选择优化 6
3.2 配合比设计改进 6
3.3 施工过程温控技术 7
第四章 工程应用与效果评估 8
4.1 实际工程案例分析 8
4.2 控制效果监测方法 8
4.3 经济效益与社会效益 9
结 论 10
参考文献 11
致 谢 12