摘要
光催化技术作为一种绿色高效的空气净化手段,近年来受到广泛关注。随着工业化进程加快和环境污染加剧,传统空气净化方法逐渐暴露出能耗高、效率低等问题,而光催化技术凭借其在常温常压下利用太阳能或人工光源降解有机污染物的特性,展现出显著优势。本研究旨在系统梳理光催化技术在空气净化领域的研究进展,重点探讨催化剂材料的设计与改性策略,以及其在实际应用中的性能表现。通过分析不同光催化剂(如TiO2及其复合材料)的制备方法、结构特征与催化机理,揭示了影响光催化效率的关键因素,包括催化剂比表面积、光吸收能力及电子-空穴对分离效率等。同时,研究引入新型助催化剂和异质结结构以提升光催化活性,并验证了其在降解甲醛、苯系物等典型室内污染物中的优异效果。结果表明,经过改性的光催化剂可显著提高光量子产率和反应速率,为解决实际空气污染问题提供了可行方案。本研究的主要贡献在于提出了基于材料设计优化的光催化体系构建策略,为推动光催化技术从实验室研究向工程化应用转化奠定了理论基础,同时为未来开发高效、稳定且经济的光催化材料指明了方向。
关键词:光催化技术;空气净化;催化剂改性;光量子产率;异质结结构
Abstract
Photocatalytic technology, as a green and efficient approach to air purification, has garnered significant attention in recent years. With the acceleration of industrialization and the exacerbation of environmental pollution, traditional air purification methods have increasingly revealed issues such as high energy consumption and low efficiency. In contrast, photocatalytic technology demonstrates remarkable advantages by utilizing solar energy or artificial light sources to degrade organic pollutants under ambient conditions. This study aims to systematically review the research progress of photocatalytic technology in the field of air purification, with a focus on the design and modification strategies of catalyst materials, as well as their performance in practical applications. By analyzing the preparation methods, structural characteristics, and catalytic mechanisms of various photocatalysts, such as TiO2 and its composite materials, this study elucidates the key factors influencing photocatalytic efficiency, including specific surface area of the catalyst, light absorption capacity, and separation efficiency of electron-hole pairs. Simultaneously, the introduction of novel co-catalysts and heterojunction structures is explored to enhance photocatalytic activity, and their excellent effects in degrading typical indoor pollutants, such as formaldehyde and benzene derivatives, are verified. The results indicate that modified photocatalysts can significantly improve photonic quantum yield and reaction rates, providing feasible solutions for addressing real-world air pollution problems. The primary contribution of this study lies in proposing a strategy for constructing photocatalytic systems based on material design optimization, which lays a theoretical foundation for advancing the transition of photocatalytic technology from laboratory research to engineering applications. Furthermore, it provides guidance for the future development of highly efficient, stable, and cost-effective photocatalytic materials.
Keywords:Photo catalytic Technology; Air Purification; Catalyst Modification; Photo Quantum Yield; Heterojunction Structure
目 录
摘要 I
Abstract II
一、绪论 1
(一) 光催化技术的研究背景与意义 1
(二) 国内外研究现状分析 1
(三) 本文研究方法与技术路线 2
二、光催化材料的特性与优化 2
(一) 光催化材料的基本原理 2
(二) 常见光催化材料的性能对比 3
(三) 材料改性与效率提升策略 3
三、光催化技术在空气净化中的应用机制 4
(一) 空气污染物的种类与特性 4
(二) 光催化降解污染物的反应机理 4
(三) 影响光催化净化效果的关键因素 5
四、光催化技术的实际应用与挑战 5
(一) 室内空气净化中的应用实例 5
(二) 工业废气处理中的技术实践 6
(三) 当前技术瓶颈与发展前景 6
结 论 8
参考文献 9