摘 要
随着制造业竞争加剧和市场需求多样化,传统刚性生产线难以适应快速变化的生产环境,机械自动化生产线的灵活性与可重构性成为现代制造系统发展的关键方向。本研究旨在探索机械自动化生产线在不同生产任务下的灵活转换能力及可重构特性,通过建立数学模型对生产线各模块间的耦合关系进行量化分析,并引入智能算法优化配置方案。采用模块化设计与标准化接口能够显著提升生产线的重组效率,降低切换成本;基于物联网技术实现设备间互联互通,为实时监控与故障预警提供了技术支撑。本研究创新性地将智能制造理念融入机械自动化生产线设计中,提出了具有自适应能力的可重构架构,为解决当前制造业面临的柔性化转型难题提供了新的思路与方法,对推动我国制造业高质量发展具有重要意义。
关键词:机械自动化生产线 柔性制造系统 可重构性
Abstract
With the intensification of manufacturing competition and the diversification of market demand, traditional rigid production lines are difficult to adapt to the rapidly changing production environment, and the flexibility and reconfigurability of mechanical automated production lines have become the key direction of the development of modern manufacturing systems. The purpose of this study is to explore the flexible conversion ability and reconfigurable characteristics of mechanical automatic production line under different production tasks, quantify the coupling relationship between each module of the production line by establishing a mathematical model, and introduce intelligent algorithms to optimize the configuration scheme. The modular design and standardized interface can significantly improve the reorganization efficiency of the production line and reduce the switching cost; Based on the Internet of Things technology, the interconnection between devices is realized, which provides technical support for real-time monitoring and fault warning. This research innovatively integrates the concept of intelligent manufacturing into the design of mechanical automatic production line, and proposes a reconfigurable architecture with adaptive ability, which provides a new idea and method for solving the flexible transformation problem faced by the current manufacturing industry, and is of great significance for promoting the high-quality development of China's manufacturing industry.
Keyword:Mechanical Automation Production Line Flexible Manufacturing System Reconfigurability
目 录
1绪论 1
1.1研究背景与意义 1
1.2国内外研究现状 1
2柔性制造系统的关键技术 1
2.1模块化设计原理 2
2.2快速换模技术应用 2
2.3智能调度算法分析 3
3生产线可重构性设计 3
3.1可重构架构模型 3
3.2重构决策机制 4
3.3动态配置策略 5
4灵活性与可重构性的实现路径 5
4.1标准化接口设计 5
4.2多功能设备集成 6
4.3自适应控制系统 7
结论 7
参考文献 9
致谢 10