摘 要
猫遗传性疾病是影响宠物猫健康的重要问题,其诊断和治疗依赖于分子生物学技术的进步。本研究旨在优化猫遗传性疾病的分子诊断技术,以提高检测的准确性和效率。研究首先对常见的猫遗传性疾病进行了系统性梳理,确定了包括肥厚型心肌病、多囊肾病等在内的重点疾病。随后,基于高通量测序技术和实时荧光定量PCR技术,设计并优化了针对这些疾病的特异性分子标记。通过对比传统诊断方法与优化后的技术,研究发现新型分子诊断技术在灵敏度、特异性和检测时间上均有显著提升。特别是在多囊肾病的检测中,优化后的技术将检测时间缩短至传统方法的三分之一,且准确率提高了15%。此外,研究还开发了一套自动化数据分析流程,进一步提升了诊断效率。该技术的应用不仅为临床诊断提供了更为可靠的工具,也为未来大规模筛查和基因治疗奠定了基础。
关键词:猫遗传性疾病;分子诊断技术;高通量测序;实时荧光定量PCR
OPTIMIZATION OF MOLECULAR DIAGNOSTIC TECHNIQUES FOR FELINE GENETIC DISEASES
ABSTRACT
Cat genetic diseases are an important problem affecting the health of pet cats, and their diagnosis and treatment depend on the progress of molecular biology technology. The aim of this study was to optimize molecular diagnostic techniques for feline genetic diseases in order to improve the accuracy and efficiency of detection. The study began with a systematic review of common feline genetic diseases and identified key diseases including hypertrophic cardiomyopathy and polycystic kidney disease. Subsequently, specific molecular markers for these diseases were designed and optimized based on high-throughput sequencing and real-time fluorescent quantitative PCR techniques. By comparing the traditional diagnostic method with the optimized technique, it is found that the new molecular diagnostic technology has a significant improvement in sensitivity, specificity and detection time. In particular, in the detection of polycystic kidney disease, the optimized technology reduces the detection time to one-third of the traditional method and improves the accuracy by 15%. In addition, an automated data analysis process was developed to further improve diagnostic efficiency. The application of this technology not only provides a more reliable tool for clinical diagnosis, but also lays the foundation for future large-scale screening and gene therapy.
KEY WORDS:Cat Genetic Diseases; Molecular Diagnostic Technology; High-Throughput Sequencing; Real-Time Fluorescence Quantitative Pcr
目 录
摘 要 I
ABSTRACT II
第1章 绪论 2
1.1 研究背景及意义 2
1.2 猫遗传性疾病分子诊断技术的研究现状 2
第2章 猫遗传性疾病分子诊断技术的核心问题分析 4
2.1 猫遗传性疾病的分子标记筛选与优化 4
2.2 高通量测序技术在猫遗传性疾病诊断中的应用 4
2.3 基于机器学习的猫遗传性疾病预测模型构建 5
第3章 猫遗传性疾病分子诊断技术的实验验证与优化策略 7
3.1 实验设计与样本采集方法的优化 7
3.2 分子诊断技术的灵敏度与特异性评估 7
3.3 多重PCR技术在猫遗传性疾病检测中的优化应用 8
第4章 结论 10
参考文献 11
致 谢 12