机械制造过程中的切削力与切削热研究




摘    要


  切削力与切削热是机械制造过程中的关键因素,直接影响加工精度、表面质量和刀具寿命。本研究旨在深入探讨切削过程中力与热的产生机制及其相互关系,为优化切削工艺提供理论依据。通过对不同材料(包括钢、铝合金和钛合金)在多种切削条件下的实验研究,结合有限元模拟分析,揭示了切削参数(如切削速度、进给量和背吃刀量)对切削力和切削温度的影响规律。随着切削速度的提高,切削力呈现先增后减的趋势,而切削温度则持续上升;进给量和背吃刀量的增加均会导致切削力和切削温度的显著提升。创新性地引入了多物理场耦合模型,实现了对切削过程中力与热的同步预测,提高了预测精度。本研究不仅丰富了切削理论体系,还为实际生产中的高效低耗加工提供了重要参考。


关键词:切削力  切削热  多物理场耦合模型  切削参数优化




Abstract

  Cutting force and cutting heat are the key factors in mechanical manufacturing process, which directly affect machining accuracy, surface quality and tool life. The purpose of this study is to deeply explore the mechanism of force and heat generation and their relationship in the cutting process, so as to provide theoretical basis for optimizing the cutting technology. Through the experimental study of different materials (including steel, aluminum alloy and titanium alloy) under various cutting conditions, combined with finite element simulation analysis, the effect of cutting parameters (such as cutting speed, feed rate and back cutting amount) on cutting force and cutting temperature is revealed. With the increase of cutting speed, the cutting force increases first and then decreases, while the cutting temperature continues to rise. An increase in the feed rate and the amount of back cut will lead to a significant increase in cutting force and cutting temperature. The multi-physics coupling model is innovatively introduced to realize the synchronous prediction of force and heat in the cutting process and improve the prediction accuracy. This research not only enriches the theoretical system of cutting, but also provides an important reference for high efficiency and low consumption machining in practical production.


Keyword:Cutting Force  Cutting Heat  Multi-Physics Coupling Model  Cutting Parameter Optimization




目  录

引言 1

1切削力的产生与特性 1

1.1切削力的基本概念 1

1.2切削力的测量方法 2

1.3影响切削力的因素分析 2

2切削热的形成与传导 3

2.1切削热的来源解析 3

2.2热传导路径与机制 3

2.3温度场分布及其影响 4

3切削力与切削热的相互关系 4

3.1力热耦合现象研究 4

3.2切削参数对力热的影响 5

3.3力热交互作用模型建立 5

4控制与优化策略 6

4.1切削工艺参数优化 6

4.2冷却润滑技术应用 6

4.3表面完整性控制措施 7

结论 7

参考文献 9

致谢 10

 

原创文章,限1人购买
此文章已售出,不提供第2人购买!
请挑选其它文章!
×
请选择支付方式
虚拟产品,一经支付,概不退款!