摘 要
隧道施工过程中,围岩稳定性分析与支护设计是保障工程安全和质量的关键环节。本文针对复杂地质条件下隧道围岩失稳问题,结合现场监测数据与数值模拟方法,系统研究了围岩应力分布特征及其对支护结构的影响。通过引入改进的岩体力学模型,并结合有限元分析技术,提出了适用于不同地质条件的动态支护设计方案。研究表明,基于实时监测数据的反馈机制能够显著提高支护结构的适应性与经济性。此外,本文创新性地提出了一种综合考虑围岩等级、地应力场及施工扰动因素的稳定性评价体系,为类似工程提供了科学依据和技术支持。研究成果不仅丰富了隧道围岩稳定性的理论基础,还为实际工程中的支护优化设计提供了重要参考,具有较高的应用价值和推广前景。关键词:隧道围岩稳定性; 动态支护设计; 岩体力学模型; 数值模拟; 稳定性评价体系
Abstract
The stability analysis of surrounding rock and support design during tunnel construction are critical to ensuring the safety and quality of the project. This study focuses on the instability issues of surrounding rock in complex geological conditions, integrating on-site monitoring data with numerical simulation methods to systematically investigate the stress distribution characteristics of surrounding rock and its influence on support structures. By introducing an improved rock mechanics model combined with finite element analysis technology, a dynamic support design scheme adaptable to various geological conditions is proposed. The research demonstrates that a feedback mechanism based on real-time monitoring data can significantly enhance the adaptability and cost-effectiveness of support structures. Furthermore, this paper innovatively develops a stability evaluation system that comprehensively considers the rock mass classification, in-situ stress field, and construction-induced disturbances, providing scientific evidence and technical support for similar projects. The findings not only enrich the theoretical foundation of surrounding rock stability in tunnels but also offer significant references for optimizing support design in practical engineering, showcasing high application value and potential for promotion.Key words:Tunnel Surrounding Rock Stability; Dynamic Support Design; Rock Mass Mechanics Model; Numerical Simulation; Stability Evaluation System
目 录
中文摘要 I
英文摘要 II
第1章、绪论 1
1.1、隧道施工中围岩稳定性分析的意义 1
1.2、围岩稳定性与支护设计的研究现状 1
第2章、围岩分类与力学特性分析 2
2.1、围岩分类及其工程意义 2
2.2、围岩力学特性的测试方法 2
2.3、围岩变形与破坏机制研究 3
第3章、围岩稳定性评价方法 4
3.1、稳定性评价的理论基础 4
3.2、数值模拟在稳定性分析中的应用 4
3.3、实测数据与稳定性评价模型构建 5
第4章、支护设计优化与实施策略 6
4.1、支护结构类型与选择原则 6
4.2、支护参数的设计与计算方法 6
4.3、支护效果监测与动态调整策略 7
结 论 8
参考文献 9