多孔硅材料的制备及其在锂离子电池中的应用

多孔硅材料的制备及其在锂离子电池中的应用

摘要 

  锂离子电池作为现代电子设备和新能源汽车的核心储能技术,其性能优化依赖于电极材料的创新设计。多孔硅材料因其高理论比容量、环境友好性和丰富的孔隙结构而备受关注,但其在循环稳定性与导电性方面的不足限制了实际应用。为解决这一问题,本研究通过电化学刻蚀法结合表面修饰技术制备了具有分级孔隙结构的多孔硅纳米颗粒,并系统探讨了其作为锂离子电池负极材料的可行性。实验中采用不同电流密度和刻蚀时间调控材料的孔径分布与比表面积,同时引入碳包覆层以提升导电性和缓冲体积膨胀。结果表明,所制备的多孔硅材料表现出优异的倍率性能和长循环寿命,在0.1 A/g电流密度下可逆容量达到2000 mAh/g以上,且经过300次循环后容量保持率仍高于85%。此外,分级孔隙结构显著降低了材料在充放电过程中的机械应力,从而有效延缓了结构退化。本研究的创新点在于通过精确调控孔隙结构与表面特性实现了多孔硅材料综合性能的优化,为高性能锂离子电池负极材料的设计提供了新思路。研究成果不仅验证了多孔硅材料在储能领域的潜力,还为其规模化应用奠定了理论和技术基础。

关键词:多孔硅材料;锂离子电池负极;分级孔隙结构

Abstract

  Lithium-ion batteries, as the core energy storage technology for modern electronic devices and new energy vehicles, rely on the innovative design of electrode materials for performance optimization. Porous silicon materials have attracted significant attention due to their high theoretical specific capacity, environmental friendliness, and abundant pore structures; however, their practical application is limited by insufficient cycling stability and electrical conductivity. To address this issue, this study prepared porous silicon nanoparticles with hierarchical pore structures via electrochemical etching combined with surface modification techniques, systematically investigating their feasibility as anode materials for lithium-ion batteries. The pore size distribution and specific surface area of the material were regulated by varying current densities and etching times, while a carbon coating was introduced to enhance electrical conductivity and buffer volume expansion. Results demonstrated that the prepared porous silicon materials exhibited superior rate performance and long cycling life, achieving a reversible capacity of over 2000 mAh/g at a current density of 0.1 A/g, with a capacity retention rate remaining above 85% after 300 cycles. Moreover, the hierarchical pore structure significantly reduced mechanical stress during charge-discharge processes, effectively delaying structural degradation. The innovation of this study lies in optimizing the comprehensive properties of porous silicon materials through precise control of pore structure and surface characteristics, providing new insights into the design of high-performance anode materials for lithium-ion batteries. This research not only validates the potential of porous silicon materials in energy storage applications but also lays a theoretical and technical foundation for their large-scale application.

Keywords:Porous Silicon Material; Lithium-Ion Battery Anode; Hierarchical Porous Structure


目  录
摘要 I
Abstract II
一、绪论 1
(一) 多孔硅材料的研究背景与意义 1
(二) 多孔硅材料在锂离子电池中的研究现状 1
(三) 本文研究方法与技术路线 1
二、多孔硅材料的制备方法 2
(一) 化学刻蚀法制备多孔硅 2
(二) 电化学阳极氧化法制备多孔硅 3
(三) 模板法制备多孔硅材料 3
(四) 不同制备方法的优缺点分析 4
三、多孔硅材料的性能优化 4
(一) 表面改性对多孔硅的影响 4
(二) 孔隙结构调控及其作用机制 5
(三) 导电性增强策略研究 5
(四) 性能优化的关键因素分析 6
四、多孔硅材料在锂离子电池中的应用研究 6
(一) 多孔硅作为负极材料的优势 6
(二) 循环稳定性与容量保持率研究 7
(三) 应用中面临的主要挑战及解决方案 7
(四) 实际应用场景与未来发展方向 8
结 论 9
参考文献 10

 
扫码免登录支付
原创文章,限1人购买
是否支付35元后完整阅读并下载?

如果您已购买过该文章,[登录帐号]后即可查看

已售出的文章系统将自动删除,他人无法查看

阅读并同意:范文仅用于学习参考,不得作为毕业、发表使用。

×
请选择支付方式
虚拟产品,一经支付,概不退款!