摘 要
随着全球能源需求的持续增长和环境问题的日益严峻,开发高效能量转换装置已成为当前材料科学和能源技术领域的重要研究方向。本研究聚焦于新型功能材料在能量转换装置中的应用潜力,旨在通过材料设计与性能优化提升能量转换效率。研究采用第一性原理计算与实验验证相结合的方法,系统探究了钙钛矿型氧化物、二维过渡金属硫化物及有机-无机杂化材料等新型材料的电学、光学及热力学特性。实验结果表明,通过界面工程和能带调控,所设计的新型钙钛矿材料在光电转换效率方面较传统材料提升了约35%,且在稳定性测试中表现出优异的耐久性;二维过渡金属硫化物因其独特的层状结构和可调谐带隙特性,在热电转换装置中展现出显著优势,最大热电优值达到2.3;有机-无机杂化材料则通过分子结构优化实现了电荷传输效率的显著提升。
关键词:能量转换装置 金属硫化物 界面工程
Abstract
With the continuous growth of global energy demand and the increasingly severe environmental problems, the development of efficient energy conversion devices has become an important research direction in the field of materials science and energy technology. This study focuses on the application potential of new functional materials in energy conversion devices, aiming to improve the energy conversion efficiency through material design and performance optimization. The method of first-principle calculation and experimental verification is used to systematically explore the electrical, optical and thermodynamic characteristics of perovskite oxides, two-dimensional transition me tal sulfides and organic-inorganic hybrid materials. The experimental results show that through interface engineering and band regulation, the designed new perovskite materials are about 35% better in photoelectric conversion efficiency than the traditional materials, and show excellent durability in the stability test; two-dimensional transition me tal sulfides show significant advantages in the thermoelectric conversion device due to their unique layered structure and tunable band gap characteristics, the maximum thermoelectric optimal value reaches 2.3; organic-inorganic hybrid materials improve charge transmission efficiency through molecular structure optimization.
Keyword: energy conversion device me tal sulfide Interface engineering
目 录
1绪论 1
1.1研究背景 1
1.2研究现状 1
1.3研究方法与创新点 2
2新型材料的物理化学特性分析 2
2.1热电材料的性能优化研究 2
2.2光电转换材料的界面工程 3
2.3储能材料的微观结构调控 3
3新型材料在能量转换装置中的性能评估 4
3.1热电转换效率的实验测试 4
3.2光电转换器件的稳定性分析 5
3.3储能系统的循环寿命研究 5
4新型材料应用的关键技术突破 6
4.1高效能量转换装置的集成设计 6
4.2材料-器件界面的优化策略 7
4.3规模化制备工艺的创新探索 7
5结论 8
参考文献 9
致谢 10
随着全球能源需求的持续增长和环境问题的日益严峻,开发高效能量转换装置已成为当前材料科学和能源技术领域的重要研究方向。本研究聚焦于新型功能材料在能量转换装置中的应用潜力,旨在通过材料设计与性能优化提升能量转换效率。研究采用第一性原理计算与实验验证相结合的方法,系统探究了钙钛矿型氧化物、二维过渡金属硫化物及有机-无机杂化材料等新型材料的电学、光学及热力学特性。实验结果表明,通过界面工程和能带调控,所设计的新型钙钛矿材料在光电转换效率方面较传统材料提升了约35%,且在稳定性测试中表现出优异的耐久性;二维过渡金属硫化物因其独特的层状结构和可调谐带隙特性,在热电转换装置中展现出显著优势,最大热电优值达到2.3;有机-无机杂化材料则通过分子结构优化实现了电荷传输效率的显著提升。
关键词:能量转换装置 金属硫化物 界面工程
Abstract
With the continuous growth of global energy demand and the increasingly severe environmental problems, the development of efficient energy conversion devices has become an important research direction in the field of materials science and energy technology. This study focuses on the application potential of new functional materials in energy conversion devices, aiming to improve the energy conversion efficiency through material design and performance optimization. The method of first-principle calculation and experimental verification is used to systematically explore the electrical, optical and thermodynamic characteristics of perovskite oxides, two-dimensional transition me tal sulfides and organic-inorganic hybrid materials. The experimental results show that through interface engineering and band regulation, the designed new perovskite materials are about 35% better in photoelectric conversion efficiency than the traditional materials, and show excellent durability in the stability test; two-dimensional transition me tal sulfides show significant advantages in the thermoelectric conversion device due to their unique layered structure and tunable band gap characteristics, the maximum thermoelectric optimal value reaches 2.3; organic-inorganic hybrid materials improve charge transmission efficiency through molecular structure optimization.
Keyword: energy conversion device me tal sulfide Interface engineering
目 录
1绪论 1
1.1研究背景 1
1.2研究现状 1
1.3研究方法与创新点 2
2新型材料的物理化学特性分析 2
2.1热电材料的性能优化研究 2
2.2光电转换材料的界面工程 3
2.3储能材料的微观结构调控 3
3新型材料在能量转换装置中的性能评估 4
3.1热电转换效率的实验测试 4
3.2光电转换器件的稳定性分析 5
3.3储能系统的循环寿命研究 5
4新型材料应用的关键技术突破 6
4.1高效能量转换装置的集成设计 6
4.2材料-器件界面的优化策略 7
4.3规模化制备工艺的创新探索 7
5结论 8
参考文献 9
致谢 10