摘 要
石油焦是工业重要原料,广泛用于能源和化工领域,但其气化效率低,限制了应用。本研究通过分析和实验,旨在提高石油焦气化技术效率。现有技术依赖于固定床和流化床反应器,操作复杂且能耗高,因此需探索新技术。研究目标是通过技术革新和工艺优化,提升气化效率和产物质量。研究采用实验和数值模拟方法,设计了小型气化装置测试操作条件,并用CFD软件模拟气化过程。结果表明,新型催化剂可将转化率从60%提升至85%以上,优化反应器结构可减少热损失和物质传递阻力,进一步提高效率。研究创新点包括开发新型复合催化剂和多级反应器结构设计,这些创新提高了气化效率,降低成本和污染。研究为石油焦高效利用提供了理论和实践支持,未来应继续优化催化剂和反应器设计以提高经济效益。
关键词:石油焦气化;催化剂;多级反应器;气化效率
Abstract
Petroleum coke is an important industrial raw material, widely used in energy and chemical industry, but its gasification efficiency is low, which limits the application. The aim of this study is to improve the technical efficiency of petroleum coke gasification through analysis and experiment. Existing technologies rely on fixed bed and fluidized bed reactors, which are complex to operate and have high energy consumption, so new technologies need to be explored. The research goal is to improve gasification efficiency and product quality through technological innovation and process optimization. The experimental and numerical simulation methods were used to design the test operating conditions of a small gasification device and simulate the gasification process with CFD software. The results show that the new catalyst can increase the conversion rate from 60% to more than 85%, optimize the reactor structure can reduce heat loss and material transfer resistance, and further improve the efficiency. Research innovations include the development of novel composite catalysts and multistage reactor structural designs that improve gasification efficiency and reduce costs and pollution. The research provides theoretical and practical support for the efficient utilization of petroleum coke. In the future, the design of catalyst and reactor should be optimized to improve economic benefits.
Key Words:Petroleum coke gasification; Catalyst; Multistage reactor; Gasification efficiency
目 录
摘 要 I
Abstract II
第1章 绪论 1
第1章 石油焦气化技术基础研究 2
1.1 石油焦特性分析 2
1.2 气化反应机理探讨 2
1.3 现有技术效率评估 3
第2章 石油焦气化技术效率影响因素 4
2.1 原料质量对效率的影响 4
2.2 操作条件优化策略 4
2.3 设备性能与效率关系 5
2.4 环境因素的考量 5
第3章 石油焦气化技术效率提升方法研究 7
3.1 催化剂应用与优化 7
3.1.1 催化剂种类选择 7
3.1.2 催化剂添加量优化 7
3.1.3 催化剂再生技术研究 8
3.1.4 催化剂对效率的影响评估 8
3.2 反应器设计改进策略 8
3.2.1 反应器结构优化设计 9
3.2.2 流体动力学模拟分析 9
3.2.3 热交换系统改进研究 9
3.2.4 反应器材料选择与耐久性分析 9
3.3 工艺流程优化探讨 10
3.3.1 预处理工艺改进方案 10
3.3.2 气化过程参数优化策略 10
3.3.3 后处理工艺提升方法研究 11
3.3.4 全流程能效评估与优化建议 11
结 论 12
参考文献 13
致 谢 14