摘 要
催化重整是提高汽油辛烷值和生产芳烃的重要工艺,其反应条件对产品性能具有决定性影响。本研究以提升汽油辛烷值为目标,系统分析了温度、压力、空速及氢油比等关键反应条件对催化重整过程的影响规律。通过实验室规模的固定床反应器进行实验研究,并结合化学动力学模型对数据进行拟合与验证,揭示了不同条件下活性物种生成与转化的机制。研究发现,随着反应温度升高,辛烷值显著增加,但过高的温度会导致催化剂积炭速率加快,从而缩短使用寿命;适度降低操作压力有助于提高芳构化反应的选择性,进而提升辛烷值;空速的优化则在平衡催化剂效率与能耗方面起到重要作用,而氢油比的调整可有效抑制副反应的发生。本研究创新性地提出了基于多变量耦合分析的最优反应条件预测方法,为工业催化重整装置的操作参数优化提供了理论依据和技术支持。结果表明,在特定条件下(490℃、1.5 MPa、1.8 h⁻¹、氢油比为2.0),重整汽油辛烷值可达到97以上,同时保持较低的催化剂失活速率。该研究不仅深化了对催化重整反应机理的理解,还为高辛烷值汽油的绿色生产路径设计奠定了基础。关键词:催化重整;辛烷值;反应条件优化;积炭速率;芳构化反应
Abstract
Catalytic reforming is a crucial process for enhancing gasoline octane rating and producing aromatics, with reaction conditions playing a decisive role in product performance. This study systematically investigates the influence of key reaction parameters, including temperature, pressure, space velocity, and hydrogen-to-oil ratio, on the catalytic reforming process with the aim of improving gasoline octane rating. Experimental research was conducted using a laboratory-scale fixed-bed reactor, and data were fitted and validated through a chemical kinetics model to elucidate the mechanisms of active species generation and transformation under different conditions. The findings indicate that an increase in reaction temperature significantly enhances the octane rating; however, excessively high temperatures accelerate catalyst coking rates, thereby shortening catalyst lifespan. Moderately reducing operating pressure improves the selectivity of aromatization reactions, which in turn elevates the octane rating. Optimization of space velocity plays a critical role in balancing catalyst efficiency and energy consumption, while adjusting the hydrogen-to-oil ratio effectively suppresses side reactions. This study innovatively proposes a prediction method for optimal reaction conditions based on multivariable coupling analysis, providing theoretical support and technical guidance for operational parameter optimization in industrial catalytic reforming units. Results demonstrate that under specific conditions (490°C, 1.5 MPa, 1.8 h⁻¹, hydrogen-to-oil ratio of 2.0), the octane rating of reformed gasoline can exceed 97 while maintaining a low catalyst deactivation rate. This research not only deepens the understanding of catalytic reforming reaction mechanisms but also lays the foundation for designing green production pathways for high-octane gasoline..
Key Words:Catalytic Reforming;Octane Number;Reaction Condition Optimization;Coke Formation Rate;Aromatization Reaction
目 录
摘 要 I
Abstract II
第1章 绪论 1
1.1 催化重整反应的研究背景 1
1.2 提升汽油辛烷值的意义分析 1
1.3 国内外研究现状综述 2
1.4 本文研究方法与技术路线 2
第2章 催化重整反应条件的基础理论 3
2.1 催化重整反应的基本原理 3
2.2 反应条件对产物分布的影响机制 3
2.3 辛烷值提升的关键影响因素 4
2.4 温度与压力的理论作用分析 4
2.5 催化剂特性对反应的影响 5
第3章 不同反应条件对辛烷值的影响实验研究 6
3.1 实验装置与材料选择 6
3.2 温度变化对辛烷值的影响分析 6
3.3 压力调节对催化效果的作用 7
3.4 氢油比对反应效率的影响研究 7
3.5 接触时间与辛烷值的关系探讨 8
第4章 结果分析与优化策略研究 9
4.1 实验数据的统计与处理方法 9
4.2 不同条件下的辛烷值提升规律 9
4.3 最优反应条件的筛选与验证 10
4.4 工业应用中的限制因素分析 10
4.5 提高辛烷值的技术改进方向 11
结 论 12
参考文献 13
致 谢 14