摘 要
随着石油工业的快速发展,石油产品中的氧含量问题日益受到关注,因其对产品质量、储存稳定性和燃烧性能具有显著影响。本研究旨在探讨石油产品精制过程中脱氧技术的关键科学问题,并提出一种高效、环保的脱氧方法以满足现代工业需求。研究基于催化加氢和吸附分离两种主要技术路径,结合新型催化剂和吸附材料的设计与优化,系统分析了不同工艺条件对脱氧效率的影响。通过实验验证,发现采用负载型金属催化剂与多孔分子筛复合材料相结合的工艺方案,可显著提升脱氧选择性和反应速率,同时降低能耗和副产物生成。结果表明,在优化条件下,该技术能够将模型油品中的总氧含量从初始值降至10 ppm以下,且催化剂表现出良好的稳定性和重复使用性能。此外,本研究首次提出了基于微观反应机理的动力学模型,为脱氧过程的精确控制提供了理论依据。总体而言,本研究不仅为石油产品的深度脱氧提供了创新性解决方案,还为相关领域的技术研发奠定了重要基础,具有显著的学术价值和应用前景。
关键词:石油产品脱氧;负载型金属催化剂;多孔分子筛复合材料;催化加氢;吸附分离
Abstract
With the rapid development of the petroleum industry, the oxygen content in petroleum products has attracted increasing attention due to its significant impact on product quality, storage stability, and combustion performance. This study aims to investigate the key scientific issues associated with oxygen removal technologies during the refining of petroleum products and proposes an efficient and environmentally friendly deoxygenation method to meet modern industrial requirements. Based on two primary technological approaches—catalytic hydrogenation and adsorption separation—the study integrates the design and optimization of novel catalysts and adsorbent materials, systematically analyzing the effects of various process conditions on deoxygenation efficiency. Experimental validation reveals that a process scheme combining supported me tal catalysts with porous molecular sieve composite materials can substantially enhance deoxygenation selectivity and reaction rates while reducing energy consumption and by-product formation. The results indicate that under optimized conditions, this technology can reduce the total oxygen content in model oil from its initial value to below 10 ppm, with the catalyst exhibiting excellent stability and reusability. Furthermore, this study presents for the first time a kinetic model based on microscopic reaction mechanisms, providing a theoretical basis for precise control of the deoxygenation process. Overall, this research not only offers innovative solutions for the deep deoxygenation of petroleum products but also lays an important foundation for technological development in related fields, demonstrating significant academic value and application potential..
Key Words:Petroleum Product Deoxygenation;Supported me tal Catalyst;Porous Molecular Sieve Composite Material;Catalytic Hydrogenation;Adsorption Separation
目 录
摘 要 I
Abstract II
第1章 绪论 1
1.1 石油产品精制与脱氧技术背景 1
1.2 脱氧技术研究的意义与价值 1
1.3 国内外脱氧技术研究现状分析 2
1.4 本文研究方法与技术路线 2
第2章 脱氧技术的理论基础与机制分析 3
2.1 石油产品中氧的存在形式与影响 3
2.2 脱氧反应的基本原理与热力学分析 3
2.3 催化剂在脱氧过程中的作用机制 4
2.4 温度与压力对脱氧效率的影响研究 4
2.5 脱氧技术的关键控制参数探讨 5
第3章 脱氧技术的主要工艺与应用实践 6
3.1 吸附脱氧技术的工艺特点与优化 6
3.2 化学脱氧技术的应用现状与改进 6
3.3 生物脱氧技术的潜力与挑战分析 7
3.4 不同脱氧技术的经济性对比研究 7
3.5 工业实践中脱氧技术的选择策略 8
第4章 脱氧技术的创新方向与未来展望 9
4.1 新型催化剂开发与脱氧效率提升 9
4.2 绿色脱氧技术的发展趋势与前景 9
4.3 智能化技术在脱氧过程中的应用探索 10
4.4 脱氧技术与其他精制工艺的协同优化 10
4.5 脱氧技术面临的瓶颈与解决思路 11
结 论 12
参考文献 13
致 谢 14
随着石油工业的快速发展,石油产品中的氧含量问题日益受到关注,因其对产品质量、储存稳定性和燃烧性能具有显著影响。本研究旨在探讨石油产品精制过程中脱氧技术的关键科学问题,并提出一种高效、环保的脱氧方法以满足现代工业需求。研究基于催化加氢和吸附分离两种主要技术路径,结合新型催化剂和吸附材料的设计与优化,系统分析了不同工艺条件对脱氧效率的影响。通过实验验证,发现采用负载型金属催化剂与多孔分子筛复合材料相结合的工艺方案,可显著提升脱氧选择性和反应速率,同时降低能耗和副产物生成。结果表明,在优化条件下,该技术能够将模型油品中的总氧含量从初始值降至10 ppm以下,且催化剂表现出良好的稳定性和重复使用性能。此外,本研究首次提出了基于微观反应机理的动力学模型,为脱氧过程的精确控制提供了理论依据。总体而言,本研究不仅为石油产品的深度脱氧提供了创新性解决方案,还为相关领域的技术研发奠定了重要基础,具有显著的学术价值和应用前景。
关键词:石油产品脱氧;负载型金属催化剂;多孔分子筛复合材料;催化加氢;吸附分离
Abstract
With the rapid development of the petroleum industry, the oxygen content in petroleum products has attracted increasing attention due to its significant impact on product quality, storage stability, and combustion performance. This study aims to investigate the key scientific issues associated with oxygen removal technologies during the refining of petroleum products and proposes an efficient and environmentally friendly deoxygenation method to meet modern industrial requirements. Based on two primary technological approaches—catalytic hydrogenation and adsorption separation—the study integrates the design and optimization of novel catalysts and adsorbent materials, systematically analyzing the effects of various process conditions on deoxygenation efficiency. Experimental validation reveals that a process scheme combining supported me tal catalysts with porous molecular sieve composite materials can substantially enhance deoxygenation selectivity and reaction rates while reducing energy consumption and by-product formation. The results indicate that under optimized conditions, this technology can reduce the total oxygen content in model oil from its initial value to below 10 ppm, with the catalyst exhibiting excellent stability and reusability. Furthermore, this study presents for the first time a kinetic model based on microscopic reaction mechanisms, providing a theoretical basis for precise control of the deoxygenation process. Overall, this research not only offers innovative solutions for the deep deoxygenation of petroleum products but also lays an important foundation for technological development in related fields, demonstrating significant academic value and application potential..
Key Words:Petroleum Product Deoxygenation;Supported me tal Catalyst;Porous Molecular Sieve Composite Material;Catalytic Hydrogenation;Adsorption Separation
目 录
摘 要 I
Abstract II
第1章 绪论 1
1.1 石油产品精制与脱氧技术背景 1
1.2 脱氧技术研究的意义与价值 1
1.3 国内外脱氧技术研究现状分析 2
1.4 本文研究方法与技术路线 2
第2章 脱氧技术的理论基础与机制分析 3
2.1 石油产品中氧的存在形式与影响 3
2.2 脱氧反应的基本原理与热力学分析 3
2.3 催化剂在脱氧过程中的作用机制 4
2.4 温度与压力对脱氧效率的影响研究 4
2.5 脱氧技术的关键控制参数探讨 5
第3章 脱氧技术的主要工艺与应用实践 6
3.1 吸附脱氧技术的工艺特点与优化 6
3.2 化学脱氧技术的应用现状与改进 6
3.3 生物脱氧技术的潜力与挑战分析 7
3.4 不同脱氧技术的经济性对比研究 7
3.5 工业实践中脱氧技术的选择策略 8
第4章 脱氧技术的创新方向与未来展望 9
4.1 新型催化剂开发与脱氧效率提升 9
4.2 绿色脱氧技术的发展趋势与前景 9
4.3 智能化技术在脱氧过程中的应用探索 10
4.4 脱氧技术与其他精制工艺的协同优化 10
4.5 脱氧技术面临的瓶颈与解决思路 11
结 论 12
参考文献 13
致 谢 14