摘 要
大跨度索膜结构作为一种轻型空间结构形式,因其独特的美学效果和高效的力学性能,在现代建筑中得到了广泛应用。然而,其复杂的非线性力学行为和多因素耦合作用机制仍面临诸多挑战。本研究旨在深入探讨大跨度索膜结构的力学行为特性,重点分析预应力分布、几何非线性及环境荷载对其整体性能的影响。通过结合有限元数值模拟与实验验证的方法,构建了考虑材料非线性和边界条件影响的精细化分析模型,并提出了改进的迭代算法以提高计算效率和精度。研究结果表明,预应力的合理分布对结构刚度和稳定性具有显著提升作用,而风荷载和温度变化等动态因素则可能引发结构的复杂振动响应。此外,本研究首次引入了基于机器学习的参数优化方法,用于预测索膜结构在极端工况下的变形模式和应力分布,为工程设计提供了新的思路。最终得出结论:通过综合考虑结构的几何形态、材料特性和外部荷载的耦合效应,可有效提升大跨度索膜结构的设计可靠性和经济性,研究成果对推动该类结构的实际应用具有重要理论价值和工程指导意义。
关键词:大跨度索膜结构;预应力分布;几何非线性;机器学习优化;环境荷载影响
ABSTRACT
Cable-membrane structures with large spans, as a type of lightweight spatial structure, have been widely applied in modern architecture due to their unique aesthetic effects and efficient mechanical properties. However, challenges remain regarding their complex nonlinear mechanical behavior and the coupling mechanisms influenced by multiple factors. This study aims to investigate the mechanical behavior characteristics of large-span cable-membrane structures, focusing on the impacts of prestress distribution, geometric nonlinearity, and environmental loads on their overall performance. By integrating finite element numerical simulation with experimental validation, a refined analytical model considering material nonlinearity and boundary condition effects was established, along with an improved iterative algorithm proposed to enhance computational efficiency and accuracy. The results indicate that a reasonable distribution of prestress significantly improves the stiffness and stability of the structure, whereas dynamic factors such as wind loads and temperature variations may induce complex vibrational responses. Additionally, this research introduces a machine-learning-based parameter optimization method for the first time, which is used to predict deformation patterns and stress distributions of cable-membrane structures under extreme conditions, offering new insights for engineering design. It is concluded that by comprehensively considering the coupling effects of structural geometry, material properties, and external loads, the design reliability and economy of large-span cable-membrane structures can be effectively improved. The findings hold significant theoretical value and practical engineering implications for advancing the application of such structures.
Keywords: Large Span Cable Membrane Structure; Prestress Distribution; Geometric Nonlinearity; Machine Learning Optimization; Environmental Load Influence
目 录
摘 要 I
ABSTRACT II
第1章 绪论 1
1.1 大跨度索膜结构的研究背景与意义 1
1.2 国内外研究现状分析 1
1.3 本文研究方法与技术路线 2
第2章 索膜结构的几何非线性分析 3
2.1 几何非线性的基本理论 3
2.2 索膜结构的初始形态分析 3
2.3 非线性变形对力学行为的影响 4
2.4 数值模拟与案例验证 4
第3章 索膜结构的动力响应特性研究 6
3.1 动力响应的基本概念与理论基础 6
3.2 风荷载作用下的动力响应分析 6
3.3 地震作用下的振动特性研究 7
3.4 动力响应优化设计策略 7
第4章 索膜结构的稳定性与极限承载能力 9
4.1 结构稳定性的理论框架 9
4.2 极限承载能力的计算方法 9
4.3 局部失稳与整体失稳的关联分析 10
4.4 实验研究与数值模拟对比 10
结论 12
参考文献 13
致 谢 14