摘 要
机械传动系统作为现代工业设备的核心组成部分,其振动特性直接影响系统的运行效率和使用寿命。为解决传统控制方法在复杂工况下难以兼顾精度与稳定性的难题,本文针对机械传动系统的振动特性展开深入分析,并提出了一种基于智能算法的振动控制策略。研究首先通过有限元建模和实验测试相结合的方式,揭示了传动系统在不同载荷和转速条件下的固有频率分布规律及其对振动响应的影响机制。随后,引入非线性动力学理论,建立了包含齿轮啮合刚度、轴承支撑特性和外部激励的多物理场耦合模型,从而准确描述了系统的动态行为。在此基础上,设计了一种融合深度学习与自适应控制的新型控制器,该控制器能够实时识别振动模式并调整控制参数,显著提升了系统的抗干扰能力和鲁棒性。实验结果表明,所提出的控制方法在降低稳态振动幅值方面较传统PID控制提高了约35%,同时有效抑制了瞬态冲击引起的共振现象。本研究的主要创新点在于将智能算法与经典控制理论有机结合,突破了传统方法在复杂工况下的性能瓶颈,为机械传动系统的振动控制提供了新思路和技术支持,具有重要的理论价值和工程应用前景。关键词:机械传动系统;振动控制;智能算法;多物理场耦合;深度学习
Abstract
Mechanical transmission systems, as a core component of modern industrial equipment, have vibration characteristics that directly affect the operational efficiency and service life of the system. To address the challenge faced by traditional control methods in balancing accuracy and stability under complex operating conditions, this study conducts an in-depth analysis of the vibration characteristics of mechanical transmission systems and proposes a vibration control strategy based on intelligent algorithms. By integrating finite element modeling with experimental testing, the research reveals the distribution patterns of natural frequencies of the transmission system under different load and rotational speed conditions, as well as their influence mechanisms on vibration responses. Subsequently, nonlinear dynamics theory is employed to establish a multiphysics coupling model that incorporates gear mesh stiffness, bearing support characteristics, and external excitations, thereby accurately describing the dynamic behavior of the system. On this basis, a novel controller that integrates deep learning with adaptive control is designed. This controller can identify vibration patterns in real time and adjust control parameters accordingly, significantly enhancing the system's disturbance rejection capability and robustness. Experimental results indicate that the proposed control method reduces steady-state vibration amplitude by approximately 35% compared to traditional PID control, while effectively suppressing resonance phenomena caused by transient impacts. The primary innovation of this study lies in the organic combination of intelligent algorithms with classical control theory, which overcomes the performance limitations of traditional methods under complex operating conditions and provides new insights and technical support for vibration control in mechanical transmission systems, demonstrating significant theoretical value and engineering application potential..Key Words:Mechanical Transmission System;Vibration Control;Intelligent Algorithm;Multi-Physics Coupling;Deep Learning
目 录
摘 要 I
Abstract II
第1章 绪论 1
1.1 机械传动系统振动研究背景与意义 1
1.2 国内外研究现状综述 1
1.3 本文研究方法与技术路线 2
第2章 机械传动系统振动特性分析 3
2.1 振动特性的理论基础与模型建立 3
2.2 关键部件的振动响应分析 3
2.3 非线性因素对振动特性的影响 4
2.4 实验验证与数据分析方法 5
第3章 机械传动系统振动控制策略 6
3.1 主动控制技术在振动抑制中的应用 6
3.2 被动控制方法及其优化设计 6
3.3 混合控制策略的可行性分析 7
3.4 控制效果评估与改进方向 7
第4章 工程案例与应用研究 9
4.1 典型机械传动系统的振动特性测试 9
4.2 振动控制方案的设计与实施 9
4.3 实际工况下的性能验证与反馈 10
4.4 案例总结与经验提炼 10
结 论 12
参考文献 13
致 谢 14