摘 要
气液传质过程在化工领域中具有重要地位,其效率直接影响到反应速率、分离效果及能耗水平。为应对传统传质技术存在的效率低、能耗高等问题,本文系统研究了化工过程中气液传质强化技术的理论基础与实际应用。研究以提高传质效率和降低能耗为目标,通过分析不同操作条件对传质性能的影响,提出了一种基于动态界面调控的新型强化方法。该方法结合机械搅拌与脉冲气流技术,在微观层面优化了气液两相接触面积和更新频率,显著提升了传质系数。实验结果表明,相较于传统技术,所提出的强化方法可使传质效率提升30%以上,并有效降低了系统的能量消耗。此外,本文还建立了适用于复杂工况的气液传质数学模型,能够准确预测不同工艺参数下的传质行为。研究的创新点在于将动态界面调控理念引入气液传质过程,突破了传统静态操作模式的限制,为工业装置的设计与优化提供了新思路。研究成果不仅有助于深化对气液传质机理的理解,还为绿色化工技术的发展奠定了重要基础。关键词:气液传质;动态界面调控;传质强化;脉冲气流技术;能耗降低
Abstract
Gas-liquid mass transfer plays a crucial role in the chemical engineering field, and its efficiency directly affects reaction rates, separation effectiveness, and energy consumption levels. To address the issues of low efficiency and high energy consumption associated with traditional mass transfer technologies, this study systematically investigates the theoretical foundations and practical applications of gas-liquid mass transfer enhancement techniques in chemical processes. Aiming to improve mass transfer efficiency and reduce energy consumption, the study analyzes the influence of various operating conditions on mass transfer performance and proposes a novel enhancement method based on dynamic interface regulation. This method integrates mechanical stirring with pulsed gas flow technology, optimizing the contact area and renewal frequency of gas-liquid two-phase interactions at the microscale, thereby significantly enhancing the mass transfer coefficient. Experimental results demonstrate that compared with conventional technologies, the proposed enhancement method increases mass transfer efficiency by over 30% while effectively reducing system energy consumption. Additionally, this study establishes a mathematical model for gas-liquid mass transfer applicable to complex operating conditions, enabling accurate prediction of mass transfer behavior under different process parameters. The innovation of this research lies in introducing the concept of dynamic interface regulation into gas-liquid mass transfer processes, breaking through the limitations of traditional static operation modes and providing new insights for the design and optimization of industrial equipment. The findings not only deepen the understanding of gas-liquid mass transfer mechanisms but also lay an important foundation for the development of green chemical engineering technologies..Key Words:Gas-Liquid Mass Transfer;Dynamic Interface Regulation;Mass Transfer Enhancement;Pulsed Gas Flow Technology;Energy Consumption Reduction
目 录
摘 要 I
Abstract II
第1章 绪论 1
1.1 化工过程与气液传质的重要性 1
1.2 气液传质强化技术的研究背景 1
1.3 国内外研究现状与发展趋势 1
1.4 本文研究方法与技术路线 2
第2章 气液传质强化的基本理论 3
2.1 气液传质的基本原理 3
2.2 影响气液传质效率的关键因素 3
2.3 强化传质的物理机制分析 4
2.4 常见气液传质模型及其应用 4
2.5 理论研究对实践的指导意义 5
第3章 气液传质强化的技术手段 6
3.1 结构化填料在传质中的应用 6
3.2 动态操作条件下的传质优化 6
3.3 新型材料对传质性能的提升 7
3.4 外场作用下的气液传质强化 7
3.5 技术手段的综合评价与选择 8
第4章 气液传质强化的实际应用案例 9
4.1 吸收塔中的传质强化设计 9
4.2 蒸馏过程中的高效传质策略 9
4.3 反应器内气液传质的优化方案 10
4.4 工业实践中常见问题及解决方法 10
4.5 应用案例的总结与展望 11
结 论 12
参考文献 13
致 谢 14