摘 要
随着分布式能源和可再生能源的快速发展,微电网作为智能电网的重要组成部分,其稳定运行对电力电子变换器提出了更高要求。本研究聚焦于电力电子变换器在微电网中的应用与优化,旨在提高微电网的电能质量、稳定性及可靠性。通过分析不同类型电力电子变换器的工作原理及其在微电网中的应用场景,采用基于模型预测控制和自适应模糊控制相结合的方法,实现了对变换器的高效控制。研究结果表明,所提出的控制策略能够有效降低谐波畸变率,提高功率因数,增强系统的动态响应能力。特别是在孤岛模式下,该方法显著改善了电压和频率的稳定性,为微电网的安全稳定运行提供了保障。此外,本研究还提出了一种新型拓扑结构,能够在不增加硬件成本的前提下,实现更高的转换效率和更好的电磁兼容性,这是本研究的主要创新点之一。通过对实际微电网系统的仿真和实验验证,证明了所提方案的有效性和优越性,为未来微电网技术的发展提供了新的思路和技术支持。
关键词:微电网 电力电子变换器 模型预测控制
Abstract
With the rapid development of distributed energy and renewable energy, microgrids, as an essential component of smart grids, impose higher requirements on power electronic converters for stable operation. This study focuses on the application and optimization of power electronic converters in microgrids, aiming to enhance power quality, stability, and reliability. By analyzing the working principles of different types of power electronic converters and their application scenarios in microgrids, a control method combining model predictive control and adaptive fuzzy control is adopted, achieving efficient control of the converters. The research results indicate that the proposed control strategy effectively reduces harmonic distortion rates, improves power factor, and enhances dynamic response capabilities. Notably, under islanding mode, this method significantly improves voltage and frequency stability, ensuring safe and stable microgrid operation. Furthermore, a novel topology is introduced, which achieves higher conversion efficiency and better electromagnetic compatibility without increasing hardware costs, representing one of the main innovations of this study. Through simulation and experimental validation on actual microgrid systems, the effectiveness and superiority of the proposed scheme are demonstrated, providing new insights and technical support for the future development of microgrid technology.
Keyword:Microgrid Power Electronic Converter Model Predictive Control
目 录
引言 1
1微电网中电力电子变换器概述 1
1.1电力电子变换器基本原理 1
1.2微电网系统架构分析 2
1.3变换器在微电网中的作用 2
2电力电子变换器的拓扑结构优化 3
2.1常用变换器拓扑比较 3
2.2拓扑结构对系统稳定性影响 3
2.3高效变换器拓扑设计方法 4
3电力电子变换器控制策略研究 4
3.1控制策略的基本要求 5
3.2分布式电源接入控制技术 5
3.3系统动态响应与稳定性控制 6
4电力电子变换器的应用案例分析 6
4.1实际微电网项目应用 6
4.2关键技术问题探讨 7
4.3未来发展方向展望 7
结论 8
参考文献 9
致谢 10