摘 要
随着全球能源转型的深入推进,高比例可再生能源接入电网已成为电力系统发展的必然趋势,然而其随机性、间歇性和低惯量特性对电网频率稳定控制带来了严峻挑战。为应对这一问题,本文以提升高比例可再生能源接入下电网频率稳定性为目标,从理论分析、建模优化和控制策略设计等方面展开研究。首先,基于大规模风电和光伏出力的不确定性特征,构建了考虑多时间尺度波动的频率响应模型,并引入储能系统与需求侧资源作为灵活调节手段;其次,提出了一种基于数据驱动的自适应频率控制方法,通过实时监测系统状态并调整控制参数,显著增强了系统的动态响应能力;再次,针对传统一次调频机制在新能源环境下的不足,设计了融合虚拟惯量和功率补偿的协同控制策略,有效弥补了可再生能源发电单元缺乏固有惯量的问题。
关键词:高比例可再生能源 频率稳定性 自适应控制
Abstract
As the global energy transition advances, integrating a high proportion of renewable energy into the grid has become an inevitable trend in power system development. However, its randomness, intermittency, and low inertia characteristics pose severe challenges to frequency stability control in the grid. To address this issue, this paper aims to enhance grid frequency stability under high renewable energy integration by conducting research from theoretical analysis, modeling optimization, and control strategy design. First, based on the uncertain characteristics of large-scale wind and solar power output, a frequency response model considering multi-time-scale fluctuations is constructed, with energy storage systems and demand-side resources introduced as flexible regulation means. Second, a data-driven adaptive frequency control method is proposed, which significantly enhances the system's dynamic response capability through real-time monitoring of system status and adjustment of control parameters. Third, to address the shortcomings of traditional primary frequency regulation mechanisms in the context of new energy environments, a collaborative control strategy integrating virtual inertia and power compensation is designed, effectively addressing the lack of inherent inertia in renewable energy generation units.
Keyword:High Proportion Renewable Energy Frequency Stability Adaptive Control
目 录
1绪论 1
1.1高比例可再生能源接入的背景与挑战 1
1.2电网频率稳定控制的研究意义 1
1.3国内外研究现状分析 1
1.4本文研究方法与技术路线 2
2高比例可再生能源接入对电网频率的影响 2
2.1可再生能源特性及其不确定性 2
2.2传统电网频率调节机制分析 2
2.3高渗透率下频率动态特性变化 3
2.4频率偏差的量化评估方法 3
2.5案例分析:典型场景下的频率响应 4
3基于灵活性资源的频率稳定控制策略 4
3.1灵活性资源的分类与作用 4
3.2储能系统在频率调节中的应用 5
3.3虚拟同步机技术的研究进展 5
3.4柔性负荷参与频率调控的潜力 6
3.5多元灵活性资源协同优化框架 6
4高比例可再生能源接入下的仿真与验证 7
4.1仿真平台与模型构建方法 7
4.2不同场景下的频率稳定性测试 7
4.3控制策略的有效性验证分析 8
4.4关键参数敏感性研究 8
4.5实验结果与改进方向探讨 9
结论 9
参考文献 11
致谢 12