摘 要
随着全球能源结构转型和可再生能源的快速发展,风力发电作为清洁能源的重要组成部分,其并网运行和电能质量优化成为研究热点。电力电子变换器在风电系统中的应用对于提高风电系统的稳定性和效率具有关键作用。本文旨在探讨电力电子变换器在风电系统中的应用,通过分析不同类型的变换器拓扑结构及其控制策略,提出了一种基于模块化多电平变换器(MMC)的新型风电并网方案。该方案采用先进的模型预测控制算法,实现了对风电输出功率的精确控制,有效降低了谐波畸变率,提高了电能质量。研究结果表明,所提出的方案能够显著提升风电系统的动态响应速度和平滑并网性能,在低电压穿越能力方面也表现出色。与传统方案相比,该方案不仅提高了能量转换效率,还增强了系统的鲁棒性和可靠性,为大规模风电场的接入提供了有效的技术支撑,推动了风电产业的技术进步,具有重要的理论意义和实际应用价值。
关键词:风力发电 电力电子变换器 模块化多电平变换器
Abstract
With the global energy structure transition and the rapid development of renewable energy, wind power generation, as a crucial component of clean energy, has become a research hotspot in terms of grid integration and power quality optimization. The application of power electronic converters in wind power systems plays a pivotal role in enhancing the stability and efficiency of these systems. This paper explores the application of power electronic converters in wind power systems by analyzing various converter topologies and their control strategies, proposing a novel wind power grid integration scheme based on Modular Multilevel Converters (MMC). This scheme employs advanced model predictive control algorithms to achieve precise control of wind power output, effectively reducing harmonic distortion rates and improving power quality. Research results indicate that the proposed scheme significantly enhances the dynamic response speed and smooth grid integration performance of wind power systems, demonstrating excellent low-voltage ride-through capability. Compared with traditional schemes, this approach not only improves energy conversion efficiency but also enhances system robustness and reliability, providing effective technical support for large-scale wind farms' integration and promoting technological progress in the wind power industry, which holds significant theoretical and practical value.
Keyword:Wind Power Generation Power Electronic Converter Modular Multilevel Converter
目 录
引言 1
1风电系统概述与需求分析 1
1.1风电系统的构成要素 1
1.2电力电子变换器的作用 2
1.3系统对变换器的需求 2
2电力电子变换器拓扑结构 3
2.1常用变换器类型比较 3
2.2拓扑结构优化设计 3
2.3新型变换器结构探索 4
3变换器控制策略研究 4
3.1控制算法原理分析 4
3.2最大功率点跟踪技术 5
3.3并网控制策略实现 6
4应用中的关键问题探讨 6
4.1电磁兼容性挑战 6
4.2效率与可靠性提升 7
4.3维护与故障诊断方法 7
结论 8
参考文献 10
致谢 11
随着全球能源结构转型和可再生能源的快速发展,风力发电作为清洁能源的重要组成部分,其并网运行和电能质量优化成为研究热点。电力电子变换器在风电系统中的应用对于提高风电系统的稳定性和效率具有关键作用。本文旨在探讨电力电子变换器在风电系统中的应用,通过分析不同类型的变换器拓扑结构及其控制策略,提出了一种基于模块化多电平变换器(MMC)的新型风电并网方案。该方案采用先进的模型预测控制算法,实现了对风电输出功率的精确控制,有效降低了谐波畸变率,提高了电能质量。研究结果表明,所提出的方案能够显著提升风电系统的动态响应速度和平滑并网性能,在低电压穿越能力方面也表现出色。与传统方案相比,该方案不仅提高了能量转换效率,还增强了系统的鲁棒性和可靠性,为大规模风电场的接入提供了有效的技术支撑,推动了风电产业的技术进步,具有重要的理论意义和实际应用价值。
关键词:风力发电 电力电子变换器 模块化多电平变换器
Abstract
With the global energy structure transition and the rapid development of renewable energy, wind power generation, as a crucial component of clean energy, has become a research hotspot in terms of grid integration and power quality optimization. The application of power electronic converters in wind power systems plays a pivotal role in enhancing the stability and efficiency of these systems. This paper explores the application of power electronic converters in wind power systems by analyzing various converter topologies and their control strategies, proposing a novel wind power grid integration scheme based on Modular Multilevel Converters (MMC). This scheme employs advanced model predictive control algorithms to achieve precise control of wind power output, effectively reducing harmonic distortion rates and improving power quality. Research results indicate that the proposed scheme significantly enhances the dynamic response speed and smooth grid integration performance of wind power systems, demonstrating excellent low-voltage ride-through capability. Compared with traditional schemes, this approach not only improves energy conversion efficiency but also enhances system robustness and reliability, providing effective technical support for large-scale wind farms' integration and promoting technological progress in the wind power industry, which holds significant theoretical and practical value.
Keyword:Wind Power Generation Power Electronic Converter Modular Multilevel Converter
目 录
引言 1
1风电系统概述与需求分析 1
1.1风电系统的构成要素 1
1.2电力电子变换器的作用 2
1.3系统对变换器的需求 2
2电力电子变换器拓扑结构 3
2.1常用变换器类型比较 3
2.2拓扑结构优化设计 3
2.3新型变换器结构探索 4
3变换器控制策略研究 4
3.1控制算法原理分析 4
3.2最大功率点跟踪技术 5
3.3并网控制策略实现 6
4应用中的关键问题探讨 6
4.1电磁兼容性挑战 6
4.2效率与可靠性提升 7
4.3维护与故障诊断方法 7
结论 8
参考文献 10
致谢 11