基于图像处理技术的手势识别系统设计和实现
摘 要
目的:手势识别系统是一种基于图像处理技术的智能化系统,它可以通过摄像头等设备获取手部动作,然后通过数学模型将手部动作转换为数值信息进行分析,最终实现对手势的识别。
方法:本文介绍了一种基于图像处理技术的手势识别系统的设计和实现,该系统通过图像采集、预处理、特征提取、分类识别等多个步骤对手势进行识别。其中,采集环节通过摄像头获取手部动作图像,预处理环节对图像进行灰度化、降噪等操作,特征提取环节通过构建Gabor滤波器对图像进行特征提取,分类识别环节利用支持向量机(SVM)对特征进行分类从而实现对手势的识别。
结果:实验结果表明,该手势识别系统具有较高的准确性和实用性,可以广泛应用于手势控制、手语翻译等领域。
关键词:手势识别系统;图像处理技术;支持向量机
Abstract
Gesture recognition system is an intelligent system based on image processing technology. It can obtain hand movements through the camera and other devices, and then convert the hand movements into numerical information through mathematical model for analysis, and finally realize gesture recognition. This paper introduces the design and implementation of a gesture recognition system based on image processing technology. The system recognizes gestures through multiple steps such as image acquisition, preprocessing, feature extraction and classification recognition. Among them, the acquisition link obtains the hand action image through the camera, the pre-processing link carries out gray-scale and noise reduction operations on the image, the feature extraction link carries out feature extraction on the image by constructing Gabor filter, and the classification recognition link uses the support vector machine (SVM) to classify the features so as to realize the recognition of gestures. The experimental results show that the gesture recognition system has high accuracy and practicality, and can be widely used in gesture control, sign language translation and other fields.
Key words: Gesture recognition system; image processing technology; support vector machine
目 录
1. 引言 1
1.1 研究背景 1
1.2 研究意义 1
1.3 研究目的 2
1.4 研究内容 3
2. 相关技术综述 4
2.1 图像处理技术 4
2.1.1 图像采集 4
2.1.2 图像预处理 4
2.1.3 特征提取 5
2.2 手势识别技术 5
2.2.1 传统手势识别方法 5
2.2.2 基于深度学习的手势识别方法 6
3. 系统设计与实现 7
3.1 系统功能模块设计 7
3.1.1 图像采集模块 7
3.1.2 图像预处理模块 7
3.1.3 特征提取模块 8
3.2 系统实现流程 8
3.2.1 图像采集与预处理流程 8
3.2.2 特征提取与手势分类流程 9
3.3 系统实现细节 9
3.3.1 手势库构建 9
3.3.2 数据集划分与训练 10
3.3.3 系统性能测试: 11
4. 实验结果与分析: 12
4.1 实验环境与数据集: 12
4.2 实验结果展示: 12
4.2.1 精度指标分析: 12
4.2.2 实时性能分析: 13
4.2.3 稳定性分析: 13
4.3 结果分析与讨论: 14
5. 结论 15
参考文献 16
致谢 18
摘 要
目的:手势识别系统是一种基于图像处理技术的智能化系统,它可以通过摄像头等设备获取手部动作,然后通过数学模型将手部动作转换为数值信息进行分析,最终实现对手势的识别。
方法:本文介绍了一种基于图像处理技术的手势识别系统的设计和实现,该系统通过图像采集、预处理、特征提取、分类识别等多个步骤对手势进行识别。其中,采集环节通过摄像头获取手部动作图像,预处理环节对图像进行灰度化、降噪等操作,特征提取环节通过构建Gabor滤波器对图像进行特征提取,分类识别环节利用支持向量机(SVM)对特征进行分类从而实现对手势的识别。
结果:实验结果表明,该手势识别系统具有较高的准确性和实用性,可以广泛应用于手势控制、手语翻译等领域。
关键词:手势识别系统;图像处理技术;支持向量机
Abstract
Gesture recognition system is an intelligent system based on image processing technology. It can obtain hand movements through the camera and other devices, and then convert the hand movements into numerical information through mathematical model for analysis, and finally realize gesture recognition. This paper introduces the design and implementation of a gesture recognition system based on image processing technology. The system recognizes gestures through multiple steps such as image acquisition, preprocessing, feature extraction and classification recognition. Among them, the acquisition link obtains the hand action image through the camera, the pre-processing link carries out gray-scale and noise reduction operations on the image, the feature extraction link carries out feature extraction on the image by constructing Gabor filter, and the classification recognition link uses the support vector machine (SVM) to classify the features so as to realize the recognition of gestures. The experimental results show that the gesture recognition system has high accuracy and practicality, and can be widely used in gesture control, sign language translation and other fields.
Key words: Gesture recognition system; image processing technology; support vector machine
目 录
1. 引言 1
1.1 研究背景 1
1.2 研究意义 1
1.3 研究目的 2
1.4 研究内容 3
2. 相关技术综述 4
2.1 图像处理技术 4
2.1.1 图像采集 4
2.1.2 图像预处理 4
2.1.3 特征提取 5
2.2 手势识别技术 5
2.2.1 传统手势识别方法 5
2.2.2 基于深度学习的手势识别方法 6
3. 系统设计与实现 7
3.1 系统功能模块设计 7
3.1.1 图像采集模块 7
3.1.2 图像预处理模块 7
3.1.3 特征提取模块 8
3.2 系统实现流程 8
3.2.1 图像采集与预处理流程 8
3.2.2 特征提取与手势分类流程 9
3.3 系统实现细节 9
3.3.1 手势库构建 9
3.3.2 数据集划分与训练 10
3.3.3 系统性能测试: 11
4. 实验结果与分析: 12
4.1 实验环境与数据集: 12
4.2 实验结果展示: 12
4.2.1 精度指标分析: 12
4.2.2 实时性能分析: 13
4.2.3 稳定性分析: 13
4.3 结果分析与讨论: 14
5. 结论 15
参考文献 16
致谢 18