摘 要
振动筛作为广泛应用于矿山、建材和化工等领域的关键设备,其动力学性能直接影响分选效率和生产效益。为提升振动筛的工作性能并优化其动力学参数,本研究基于理论分析与实验验证相结合的方法,深入探讨了振动筛的动力学特性及其优化策略。首先,通过建立振动筛的动力学模型,结合有限元分析方法,对筛体的振动响应、激振力分布及动态稳定性进行了系统研究。其次,采用多目标优化算法对振动筛的关键参数(如激振频率、振幅和筛网角度)进行优化设计,并提出了兼顾分选效率与能耗的综合评价指标。在此基础上,设计了一系列对比实验以验证优化方案的有效性,结果表明优化后的振动筛在处理能力、筛分精度和能耗控制方面均表现出显著改善。具体而言,优化后筛分效率提升了约15%,能耗降低了约10%,且设备运行平稳性得到明显增强。本研究的创新点在于将多物理场耦合分析引入振动筛动力学研究,并提出了一种兼顾性能与能耗的优化框架,为振动筛的设计改进提供了理论支持和技术参考。研究成果不仅有助于提升振动筛的实际应用效果,还为相关机械设备的动力学优化提供了有益借鉴。关键词:振动筛动力学;多目标优化;有限元分析;筛分效率;能耗控制
Abstract
Vibrating screens, as critical equipment widely used in mining, construction materials, and chemical industries, have their dynamic performance directly impacting separation efficiency and production benefits. To enhance the working performance of vibrating screens and optimize their dynamic parameters, this study thoroughly investigates the dynamic characteristics of vibrating screens and corresponding optimization strategies by integrating theoretical analysis with experimental validation. Firstly, a dynamic model of the vibrating screen is established, and combined with finite element analysis, a systematic study is conducted on the vibration response, excitation force distribution, and dynamic stability of the screen body. Secondly, a multi-ob jective optimization algorithm is employed to optimize key parameters such as excitation frequency, amplitude, and screen angle, while proposing a comprehensive evaluation index that balances separation efficiency with energy consumption. Based on this, a series of comparative experiments are designed to verify the effectiveness of the optimization scheme, and the results indicate significant improvements in processing capacity, screening accuracy, and energy consumption control. Specifically, the screening efficiency increases by approximately 15%, energy consumption decreases by about 10%, and the operational smoothness of the equipment is notably enhanced. The innovation of this study lies in introducing multiphysics coupling analysis into the dynamics research of vibrating screens and proposing an optimization fr amework that considers both performance and energy consumption, providing theoretical support and technical references for the design improvement of vibrating screens. The research findings not only contribute to enhancing the practical application effects of vibrating screens but also offer valuable insights for the dynamic optimization of related mechanical equipment..
Key Words:Vibration Screen Dynamics;Multi-ob jective Optimization;Finite Element Analysis;Screening Efficiency;Energy Consumption Control
目 录
摘 要 I
Abstract II
第1章 绪论 2
1.1 振动筛动力学参数优化的研究背景与意义 2
1.2 振动筛动力学参数优化的国内外研究现状 2
1.3 本文研究振动筛动力学参数优化的方法与技术路线 3
第2章 振动筛动力学建模与理论分析 4
2.1 振动筛动力学基本原理与数学模型构建 4
2.2 振动筛关键动力学参数的定义与作用机制 4
2.3 动力学模型的验证与误差分析方法探讨 5
2.4 理论分析对实验研究的指导意义 6
第3章 振动筛动力学参数优化方法研究 8
3.1 参数优化的目标函数与约束条件设定 8
3.1.1 目标函数的设计原则 8
3.1.2 约束条件的选取依据 8
3.1.3 多目标优化问题的处理方法 9
3.1.4 参数敏感性分析及其应用 9
3.2 优化算法的选择与改进策略 9
3.2.1 常见优化算法的适用性分析 10
3.2.2 改进遗传算法的具体实现步骤 10
3.2.3 粒子群优化算法的应用场景 11
3.2.4 混合优化算法的优势与局限性 11
3.3 参数优化结果的评估与验证方法 11
3.3.1 优化结果的稳定性检验 12
3.3.2 实际工况下的适应性分析 12
3.3.3 数据驱动的优化效果评价指标 13
第4章 振动筛动力学参数优化的实验研究 14
4.1 实验平台设计与测试方案制定 14
4.1.1 振动筛实验装置的结构特点 14
4.1.2 测试传感器的布置与数据采集系统 14
4.1.3 实验工况的设定与控制方法 15
4.1.4 数据预处理与分析流程 15
4.2 实验数据的采集与初步分析 15
4.2.1 动力学响应信号的特征提取 15
4.2.2 关键参数的动态变化规律观察 16
4.2.3 异常数据的识别与剔除方法 16
4.2.4 数据质量评估与改进措施 16
4.3 参数优化实验结果与理论对比分析 17
4.3.1 理论预测值与实验测量值的偏差分析 17
4.3.2 不同工况下优化效果的比较研究 17
4.3.3 实验结果的分析与讨论 18
4.3.4 参数优化的实际工程价值体现 18
4.4 实验研究中发现的问题及改进建议 18
4.4.1 实验过程中遇到的技术难点 18
4.4.2 参数优化在实际应用中的限制因素 19
4.4.3 提高实验可靠性的潜在改进方向 19
结 论 19
参考文献 21
致 谢 22