摘 要
连杆机构作为机械系统中的核心传动部件,广泛应用于工业机器人、航空航天设备及汽车工程等领域,其动力学性能直接影响系统的运行效率与稳定性。然而,传统连杆机构的动力学建模方法往往忽略了非线性因素和复杂工况的影响,导致模型精度不足,难以满足现代高精度机械系统的需求。为此,本研究以提高连杆机构动力学建模与仿真分析的准确性为目标,提出了一种基于多体动力学理论的改进建模方法。该方法综合考虑了柔性变形、摩擦力、惯性力以及外部载荷等多因素耦合作用,并通过引入有限元分析技术对连杆的弹性变形进行精确描述,从而显著提升了模型的物理真实性。在仿真分析阶段,采用数值积分算法对动力学方程进行求解,并结合实际实验数据对模型参数进行校准与验证。结果表明,所提出的建模方法能够准确预测连杆机构在不同工况下的动态响应特性,误差控制在合理范围内。此外,本研究还开发了一套集成化的仿真平台,实现了从几何建模到动力学仿真的全流程自动化处理,大幅提高了分析效率。研究的主要创新点在于将柔性多体动力学理论与有限元分析方法有机结合,突破了传统刚性模型的局限性,为连杆机构的设计优化提供了可靠的理论依据和技术支持。最终结论显示,该方法不仅适用于常规工况,还能有效应对极端条件下的动力学问题,具有重要的理论价值和工程应用前景。关键词:连杆机构动力学;多体动力学理论;有限元分析;柔性变形建模;仿真平台开发
Abstract
The connecting rod mechanism, as a core transmission component in mechanical systems, is widely used in industrial robots, aerospace equipment, and automotive engineering, with its dynamic performance directly affecting the operational efficiency and stability of the system. However, traditional dynamic modeling methods for connecting rod mechanisms often neglect nonlinear factors and complex operating conditions, leading to insufficient model accuracy that fails to meet the requirements of modern high-precision mechanical systems. To address this issue, this study aims to enhance the accuracy of dynamic modeling and simulation analysis for connecting rod mechanisms by proposing an improved modeling method based on multibody dynamics theory. This method comprehensively considers the coupling effects of multiple factors, including flexible deformation, friction forces, inertial forces, and external loads, while incorporating finite element analysis technology to precisely describe the elastic deformation of the connecting rods, thereby significantly improving the physical realism of the model. During the simulation analysis phase, numerical integration algorithms are employed to solve the dynamic equations, and model parameters are calibrated and validated using actual experimental data. The results demonstrate that the proposed modeling method can accurately predict the dynamic response characteristics of connecting rod mechanisms under various operating conditions, with errors controlled within a reasonable range. Furthermore, this study develops an integrated simulation platform that automates the entire process from geometric modeling to dynamic simulation, greatly enhancing analytical efficiency. The primary innovation of this research lies in the organic combination of flexible multibody dynamics theory and finite element analysis methods, overcoming the limitations of traditional rigid models and providing a reliable theoretical basis and technical support for the design optimization of connecting rod mechanisms. The final conclusion indicates that this method is not only applicable to conventional operating conditions but also effectively addresses dynamic problems under extreme conditions, showcasing significant theoretical value and promising engineering application prospects..
Key Words:Linkage Mechanism Dynamics;Multibody Dynamics Theory;Finite Element Analysis;Flexible Deformation Modeling;Simulation Platform Development
目 录
摘 要 I
Abstract II
第1章 绪论 2
1.1 研究背景与意义 2
1.2 研究现状综述 2
1.3 研究方法框架 3
第2章 连杆机构动力学建模理论基础 5
2.1 动力学建模的基本原理与方法 5
2.2 连杆机构的运动学特性分析 5
2.3 力学参数对连杆机构的影响机制 6
2.4 数学模型在连杆机构中的应用形式 7
第3章 连杆机构动力学建模的具体实现 8
3.1 建模过程中的关键步骤解析 8
3.1.1 系统参数的定义与选取 8
3.1.2 惯性力与惯性矩的计算方法 9
3.1.3 动力学方程的建立与求解 9
3.1.4 模型验证与误差分析方法 10
3.2 不同类型连杆机构的建模特点 10
3.2.1 曲柄滑块机构的动力学建模 10
3.2.2 四连杆机构的动力学建模 11
3.2.3 复杂连杆系统的建模策略 11
3.2.4 特殊工况下的建模调整方法 12
3.3 软件工具在建模中的辅助作用 12
第4章 连杆机构动力学仿真分析与优化 14
4.1 仿真分析的基本流程与技术手段 14
4.1.1 仿真软件的选择与配置 14
4.1.2 初始条件与边界条件的设定 14
4.1.3 数据采集与处理方法 15
4.1.4 仿真结果的可视化表达 15
4.2 动力学仿真的典型应用场景 15
4.2.1 工业机器人中的连杆机构仿真 16
4.2.2 内燃机连杆系统的动态性能分析 16
4.2.3 高速机械中的振动特性仿真 17
4.2.4 极端环境下的连杆机构行为预测 17
4.3 仿真结果的优化策略探讨 17
4.3.1 参数敏感性分析与优化目标设定 18
4.3.2 结构改进对动力学性能的影响 18
4.3.3 控制算法在连杆系统中的应用 18
4.3.4 优化后的仿真验证与效果评估 19
结 论 19
参考文献 21
致 谢 22