摘 要
随着能源转型和可再生能源的快速发展,分布式能源(DE)的大规模接入已成为智能电网建设的重要趋势。然而,分布式能源的随机性、间歇性和不确定性对电网稳定性带来了显著挑战。本研究旨在分析分布式能源接入对智能电网稳定性的影响,并提出有效的评估与优化方法。为此,首先构建了包含多种分布式能源形式的动态仿真模型,结合实际电网运行数据,量化其对电压稳定、频率波动及功率平衡的影响。其次,采用改进的时域仿真算法和多目标优化策略,评估不同渗透率下分布式能源对接入点电压偏差、短路电流水平以及系统阻尼特性的作用机制。研究表明,在高渗透率场景下,分布式能源可能导致局部电压越限和系统振荡风险增加,但通过合理配置储能系统和优化控制策略,可以有效缓解上述问题。
关键词:分布式能源 智能电网稳定性 时域仿真
Abstract
With the rapid development of energy transformation and renewable energy, the large-scale access of distributed energy (DE) has become an important trend in smart grid construction. However, the stochasticity, intermittency, and uncertainty of distributed energy sources pose significant challenges to power grid stability. The purpose of this study is to analyze the impact of distributed energy access on the stability of smart grid and propose effective evaluation and optimization methods. Therefore, a dynamic simulation model including a variety of distributed energy forms is constructed, and the influence on voltage stability, frequency fluctuation and power balance are quantified by combining the actual power grid operation data. Secondly, the improved time-domain simulation algorithm and multi-ob jective optimization strategy are used to evaluate the action mechanism of distributed energy on the access point voltage deviation, short-circuit current level and system damping characteristics under different permeability. The study shows that in the high permeability scenario, distributed energy may lead to local voltage limit and increased risk of system oscillation, but the above problems can be effectively alleviated by reasonable allocation of energy storage system and optimal control strategy.
Keyword:Distributed Energy Smart Grid Stability Time-Domain Simulation
目 录
引言 1
1分布式能源接入概述 1
1.1分布式能源定义与分类 1
1.2智能电网基本特性分析 2
1.3分布式能源接入方式研究 2
1.4接入技术的关键挑战 2
2稳定性影响的理论基础 3
2.1电力系统稳定性概念 3
2.2分布式能源对电压稳定的影响 3
2.3频率波动的产生机制分析 4
2.4功率平衡与动态响应关系 4
3实际影响因素分析 5
3.1不同类型分布式能源的影响差异 5
3.2间歇性电源接入的不确定性分析 5
3.3负荷变化对接入稳定性的干扰 6
3.4控制策略在稳定性中的作用 6
4稳定性优化与解决方案 6
4.1储能技术的应用与效果评估 6
4.2智能调控算法的设计与实现 7
4.3微电网模式下的稳定性提升方法 7
4.4政策与标准对稳定性的支持 8
结论 8
参考文献 10
致谢 11