摘 要
随着全球能源危机和环境污染问题日益严峻,新能源发电技术作为可持续发展的关键手段受到广泛关注。其中,最大功率点跟踪(MPPT)技术在提升新能源发电系统效率方面具有重要作用。本研究以光伏和风能发电系统为对象,深入探讨了MPPT算法的优化设计及其在实际工况中的应用效果。研究旨在解决传统MPPT算法在动态环境下的响应速度慢、稳态误差大以及适应性不足等问题,提出了一种基于自适应模糊控制的改进型MPPT算法。该算法通过引入模糊逻辑控制器动态调整跟踪步长,并结合预测模型提高对环境变化的响应能力。实验结果表明,所提出的算法在光照强度快速变化或风速波动较大的情况下,能够显著提升系统的功率输出稳定性与跟踪精度,相较于传统P%,稳态功率损失降低约15%。此外,该算法还具备较强的鲁棒性和通用性,可适用于多种类型的新能源发电场景。
关键词:最大功率点跟踪 自适应模糊控制 光伏和风能发电系统
Abstract
With the increasingly severe global energy crisis and environmental pollution problems, new energy power generation technology, as a key means of sustainable development, has been widely concerned. Among them, the maximum power point tracking (MPPT) technology plays an important role in improving the efficiency of the new energy power generation system. In this study, the paper discusses the optimization design of MPPT algorithm and its application effect in practical working conditions. The research aims to solve the problems of slow response speed, large steady-state error and insufficient adaptability of traditional MPPT algorithm in dynamic environment, and proposes an improved MPPT algorithm based on adaptive fuzzy control. The algorithm improves the response to environmental changes by introducing a fuzzy logic controller to dynamically adjust the tracking step size and combine with the prediction model. The experimental results show that the proposed algorithm can significantly improve the power output stability and tracking accuracy of the system in the case of rapid change in light intensity or large wind speed fluctuation, compared with the traditional P%, the steady state power loss is reduced by about 15%. In addition, the algorithm also has strong robustness and versatility, and can be applied to various types of new energy power generation scenarios.
Keyword:Maximum Power Point Tracking Adaptive Fuzzy Control Photovoltaic And Wind Energy Generation System
目 录
1绪论 1
1.1新能源发电系统发展背景 1
1.2最大功率点跟踪技术的意义 1
1.3国内外研究现状分析 1
1.4本文研究方法与创新点 2
2最大功率点跟踪技术原理分析 2
2.1光伏发电系统的特性研究 2
2.2风力发电的最大功率点特性 2
2.3常见MPPT算法 3
3最大功率点跟踪算法优化研究 4
3.1传统传统最大功率点跟踪算法 4
3.2基于扰动观察法的改进策略 5
3.3基于增量电导法的性能提升 5
3.4智能优化算法在 5
3.5算法优化对系统效率的影响 6
4最大功率点跟踪系统设计与实现 6
4.1系统硬件架构设计 6
4.2控制器选型与参数优化 7
4.3软件实现与仿真验证 7
4.4实验平台搭建与测试方法 8
4.5测试结果分析与性能评估 8
结论 8
参考文献 10
致谢 11