摘 要
随着可再生能源和电力电子技术的快速发展,高效、可靠的电力变换技术成为实现能源高效利用的关键环节。全桥逆变器作为电力电子变换的核心拓扑之一,在新能源发电、储能系统及电机驱动等领域具有广泛应用前景。本研究以提升全桥逆变器的效率与稳定性为目标,深入分析了传统全桥逆变器在开关损耗、谐波失真及动态响应等方面的不足,并提出了一种基于优化调制策略与先进控制算法的高效电力电子变换技术。通过引入自适应脉宽调制(PWM)方法和非线性预测控制技术,显著降低了开关器件的动态损耗并提升了系统的整体性能。实验结果表明,所提出的方案能够在高频工作条件下有效抑制谐波分量,同时提高功率密度和能量转换效率。此外,本研究还设计了一种新型的热管理策略,进一步增强了系统的可靠性和长期运行能力。
关键词:全桥逆变器 自适应调制算法 非线性预测控制
Abstract
With the rapid development of renewable energy and power electronics technology, the efficient and reliable power conversion technology has become the key link to realize the efficient energy utilization. As one of the core topologies of power electronic transformation, the full-bridge inverter has a wide application prospect in the fields of new energy power generation, energy storage system and motor drive. Based on the goal of improving the efficiency and stability of full bridge inverter, the paper deeply analyzes the shortcomings of traditional full bridge inverter in switching loss, harmonic distortion and dynamic response, and proposes an efficient power electron transformation technology based on optimized modulation strategy and advanced control algorithm. By introducing the adaptive pulse width modulation (PWM) method and the nonlinear predictive control technology, the dynamic loss of the switching device is significantly reduced and the overall performance of the system is improved. The experimental results show that the proposed scheme can effectively suppress harmonic components under high frequency operating conditions while improving the power density and energy conversion efficiency. Furthermore, a novel thermal management strategy to further enhanced the reliability and long-term operation of the system.
Keyword:Full-Bridge Inverter Adaptive Modulation Algorithm Nonlinear Predictive Control
目 录
1绪论 1
1.1研究背景与意义 1
1.2国内外研究现状分析 1
1.3本文研究方法与技术路线 2
2全桥逆变器的基本原理与特性分析 2
2.1全桥逆变器的工作原理 2
2.2拓扑结构及其关键参数 3
2.3效率影响因素分析 3
2.4控制策略概述 4
3高效电力电子变换的关键技术研究 4
3.1软开关技术的应用与优化 4
3.2损耗建模与仿真分析 5
3.3热管理设计与实现 5
3.4新型器件选型与评估 6
4实验验证与性能优化研究 6
4.1实验平台搭建与测试方法 6
4.2效率提升方案的实验验证 7
4.3动态响应特性分析 7
4.4系统稳定性与可靠性评估 8
结论 8
参考文献 10
致谢 11