摘 要
分布式能源系统作为现代能源体系的重要组成部分,其协调控制与优化调度策略的研究对于提升能源利用效率、促进可再生能源消纳以及实现低碳化发展具有重要意义。随着能源转型的深入推进和分布式电源渗透率的持续提高,传统集中式能源管理方式已难以满足复杂多变的运行需求。为此,本研究聚焦于分布式能源系统的协调控制与优化调度问题,旨在提出一种适应性强、灵活性高的综合解决方案。研究首先构建了包含多种分布式能源形式的系统模型,充分考虑了风能、太阳能等间歇性能源的不确定性特征以及储能设备的动态特性;其次,基于多目标优化理论,设计了一种兼顾经济性、可靠性和环保性的调度框架,并引入智能优化算法以提升求解效率;此外,针对分布式能源系统中各子系统间的耦合关系,提出了基于分层分区控制的协调机制,实现了局部自治与全局优化的有机结合。通过仿真验证与实际案例分析,结果表明所提方法能够显著降低系统运行成本,提高新能源利用率,并有效缓解电网压力。本研究的主要创新点在于将多源协同优化与智能控制技术相结合,为分布式能源系统的高效运行提供了新的思路,同时为未来智慧能源网络的发展奠定了理论基础。研究成果不仅对分布式能源系统的规划与运营具有重要指导意义,也为推动能源领域的技术创新和可持续发展作出了积极贡献。
关键词:分布式能源系统;协调控制;优化调度;多目标优化;智能控制算法
Abstract
Distributed energy systems, as a critical component of the modern energy system, play an essential role in enhancing energy utilization efficiency, promoting renewable energy accommodation, and achieving low-carbon development. With the deepening of the energy transition and the continuous increase in the penetration rate of distributed power sources, traditional centralized energy management approaches struggle to meet the complex and dynamic operational requirements. In response to this challenge, this study focuses on the coordinated control and optimal dispatching strategies for distributed energy systems, aiming to propose a comprehensive solution with strong adaptability and high flexibility. The research first establishes a system model incorporating various forms of distributed energy, fully considering the uncertainty characteristics of intermittent energy sources such as wind and solar power, as well as the dynamic properties of energy storage devices. Subsequently, based on multi-ob jective optimization theory, a dispatching fr amework is designed that balances economic efficiency, reliability, and environmental protection, with intelligent optimization algorithms introduced to enhance computational efficiency. Additionally, addressing the coupling relationships among subsystems within distributed energy systems, a coordination mechanism based on hierarchical and zonal control is proposed, achieving an organic combination of local autonomy and global optimization. Through simulation verification and case study analysis, the results demonstrate that the proposed method significantly reduces system operating costs, improves the utilization rate of new energy sources, and effectively alleviates grid pressure. The primary innovation of this study lies in integrating multi-source collaborative optimization with intelligent control technologies, offering new insights into the efficient operation of distributed energy systems and laying a theoretical foundation for the future development of smart energy networks. The research findings not only provide important guidance for the planning and operation of distributed energy systems but also contribute positively to technological innovation and sustainable development in the energy sector..
Key Words:Distributed Energy System;Coordinated Control;Optimal Scheduling;Multi-ob jective Optimization;Intelligent Control Algorithm
目 录
摘 要 I
Abstract II
第1章 绪论 2
1.1 分布式能源系统研究背景与意义 2
1.2 国内外研究现状分析 2
1.3 本文研究方法与技术路线 3
第2章 分布式能源系统的协调控制基础理论 5
2.1 协调控制的基本概念与框架 5
2.2 关键技术与算法综述 5
2.3 系统建模与仿真需求 6
2.4 控制策略的评价指标体系 7
第3章 分布式能源系统的优化调度策略研究 8
3.1 调度目标与约束条件分析 8
3.1.1 多目标优化模型构建 8
3.1.2 不确定性因素的影响评估 9
3.1.3 能源供需平衡机制设计 9
3.1.4 调度策略的经济性分析 9
3.1.5 环境效益评估方法 10
3.2 智能优化算法的应用研究 10
3.2.1 遗传算法在调度中的应用 11
3.2.2 粒子群算法的改进与实现 11
3.2.3 混合智能算法的设计思路 12
3.2.4 算法性能对比与验证 12
3.2.5 实时调度能力提升策略 12
第4章 分布式能源系统的协调控制与优化调度实践 14
4.1 实际案例分析与数据处理 14
4.1.1 数据采集与预处理方法 14
4.1.2 案例系统架构描述 14
4.1.3 关键参数的选择与设定 15
4.1.4 模型验证与结果分析 15
4.1.5 结果可靠性评估 15
4.2 控制与调度策略的集成方案 16
4.2.1 集成框架的设计原则 16
4.2.2 控制与调度的协同机制 16
4.2.3 系统稳定性保障措施 17
4.2.4 实时反馈与调整机制 17
4.2.5 系统运行效率优化路径 17
4.3 应用效果评估与改进建议 18
4.3.1 技术经济性综合评价 18
4.3.2 系统运行风险分析 18
4.3.3 改进方向与未来展望 19
结 论 19
参考文献 21
致 谢 22