超高层建筑结构的风振响应分析与控制
摘要
随着城市化进程的加快和土地资源的日益紧张,超高层建筑已成为现代城市建设的重要组成部分,但其结构在风荷载作用下的振动问题也愈发突出,直接影响建筑的安全性和舒适性为此,本文针对超高层建筑结构的风振响应展开系统研究,旨在探索有效的分析方法与控制策略研究中采用数值模拟与试验验证相结合的方式,基于计算流体动力学(CFD)技术对建筑周围的风场特性进行精细化模拟,并结合随机振动理论建立风致响应分析模型同时,引入主动质量阻尼器(AMD)作为控制手段,通过优化算法设计控制器参数结果表明,所提出的风场模拟方法能够准确捕捉复杂风环境下的气动力特性,且随机振动模型可高效预测超高层建筑的风振响应此外,AMD系统的应用显著降低了结构关键部位的加速度响应和位移幅值,提升了建筑的整体性能本研究不仅为超高层建筑的风振分析提供了可靠的数值工具,还通过控制策略的优化设计为工程实践提供了重要参考。
关键词 超高层建筑;风振响应;计算流体动力学;主动质量阻尼器
Abstract
With the acceleration of urbanization and the increasing scarcity of land resources, super-tall buildings have become an essential component of modern urban construction. However, the vibration issue of their structures under wind loads has become increasingly prominent, directly affecting the safety and comfort of buildings. To address this, this study systematically investigates the wind-induced vibration response of super-tall building structures, aiming to explore effective analytical methods and control strategies. A combination of numerical simulation and experimental validation is employed in the research. Computational Fluid Dynamics (CFD) technology is utilized to conduct detailed simulations of the wind field characteristics around buildings, while a wind-induced response analysis model is established based on stochastic vibration theory. Additionally, Active Mass Dampers (AMD) are introduced as a control measure, with controller parameters designed through optimization algorithms. The results indicate that the proposed wind field simulation method can accurately capture aerodynamic characteristics under complex wind environments, and the stochastic vibration model can efficiently predict the wind-induced responses of super-tall buildings. Furthermore, the application of the AMD system significantly reduces the acceleration response and displacement amplitude at critical structural locations, thereby enhancing the overall performance of the building. This study not only provides reliable numerical tools for wind-induced vibration analysis of super-tall buildings but also offers significant reference for engineering practice through the optimization design of control strategies. Its innovation lies in the organic integration of high-precision wind field simulation and active control technology, achieving effective suppression of wind-induced responses and substantial improvement of structural performance.
Keywords Super high-rise building; wind vibration response; computational fluid dynamics; active mass damper
目录
摘要 I
Abstract II
第1章 绪论 2
1.1 超高层建筑风振响应的研究背景 2
1.2 风振响应分析与控制的意义 2
1.3 国内外研究现状综述 2
1.4 本文研究方法与技术路线 3
第2章 风振响应的理论基础与分析方法 4
2.1 风荷载特性及其对结构的影响 4
2.2 风振响应的基本理论框架 4
2.3 数值模拟方法在风振分析中的应用 5
2.4 动力学模型的建立与验证 5
2.5 不确定性因素对风振响应的影响 6
第3章 风振响应的关键影响因素分析 7
3.1 建筑形态对风振响应的作用机制 7
3.2 结构刚度与阻尼比的影响研究 7
3.3 地形与周边环境的耦合效应 8
3.4 高层建筑高度与风振响应的关系 8
3.5 材料特性对风振性能的影响 9
第4章 风振响应控制策略与优化设计 10
4.1 主动控制技术在风振控制中的应用 10
4.2 被动控制装置的设计与效果评估 10
4.3 混合控制策略的可行性分析 11
4.4 风振控制系统的优化设计方法 11
4.5 实际工程案例分析与经验总结 12
结论 13
参考文献 14
致谢 15
摘要
随着城市化进程的加快和土地资源的日益紧张,超高层建筑已成为现代城市建设的重要组成部分,但其结构在风荷载作用下的振动问题也愈发突出,直接影响建筑的安全性和舒适性为此,本文针对超高层建筑结构的风振响应展开系统研究,旨在探索有效的分析方法与控制策略研究中采用数值模拟与试验验证相结合的方式,基于计算流体动力学(CFD)技术对建筑周围的风场特性进行精细化模拟,并结合随机振动理论建立风致响应分析模型同时,引入主动质量阻尼器(AMD)作为控制手段,通过优化算法设计控制器参数结果表明,所提出的风场模拟方法能够准确捕捉复杂风环境下的气动力特性,且随机振动模型可高效预测超高层建筑的风振响应此外,AMD系统的应用显著降低了结构关键部位的加速度响应和位移幅值,提升了建筑的整体性能本研究不仅为超高层建筑的风振分析提供了可靠的数值工具,还通过控制策略的优化设计为工程实践提供了重要参考。
关键词 超高层建筑;风振响应;计算流体动力学;主动质量阻尼器
Abstract
With the acceleration of urbanization and the increasing scarcity of land resources, super-tall buildings have become an essential component of modern urban construction. However, the vibration issue of their structures under wind loads has become increasingly prominent, directly affecting the safety and comfort of buildings. To address this, this study systematically investigates the wind-induced vibration response of super-tall building structures, aiming to explore effective analytical methods and control strategies. A combination of numerical simulation and experimental validation is employed in the research. Computational Fluid Dynamics (CFD) technology is utilized to conduct detailed simulations of the wind field characteristics around buildings, while a wind-induced response analysis model is established based on stochastic vibration theory. Additionally, Active Mass Dampers (AMD) are introduced as a control measure, with controller parameters designed through optimization algorithms. The results indicate that the proposed wind field simulation method can accurately capture aerodynamic characteristics under complex wind environments, and the stochastic vibration model can efficiently predict the wind-induced responses of super-tall buildings. Furthermore, the application of the AMD system significantly reduces the acceleration response and displacement amplitude at critical structural locations, thereby enhancing the overall performance of the building. This study not only provides reliable numerical tools for wind-induced vibration analysis of super-tall buildings but also offers significant reference for engineering practice through the optimization design of control strategies. Its innovation lies in the organic integration of high-precision wind field simulation and active control technology, achieving effective suppression of wind-induced responses and substantial improvement of structural performance.
Keywords Super high-rise building; wind vibration response; computational fluid dynamics; active mass damper
目录
摘要 I
Abstract II
第1章 绪论 2
1.1 超高层建筑风振响应的研究背景 2
1.2 风振响应分析与控制的意义 2
1.3 国内外研究现状综述 2
1.4 本文研究方法与技术路线 3
第2章 风振响应的理论基础与分析方法 4
2.1 风荷载特性及其对结构的影响 4
2.2 风振响应的基本理论框架 4
2.3 数值模拟方法在风振分析中的应用 5
2.4 动力学模型的建立与验证 5
2.5 不确定性因素对风振响应的影响 6
第3章 风振响应的关键影响因素分析 7
3.1 建筑形态对风振响应的作用机制 7
3.2 结构刚度与阻尼比的影响研究 7
3.3 地形与周边环境的耦合效应 8
3.4 高层建筑高度与风振响应的关系 8
3.5 材料特性对风振性能的影响 9
第4章 风振响应控制策略与优化设计 10
4.1 主动控制技术在风振控制中的应用 10
4.2 被动控制装置的设计与效果评估 10
4.3 混合控制策略的可行性分析 11
4.4 风振控制系统的优化设计方法 11
4.5 实际工程案例分析与经验总结 12
结论 13
参考文献 14
致谢 15