摘 要
增材制造技术作为先进制造领域的重要分支,近年来在复杂机械零件制造中展现出显著优势。传统制造方法在处理复杂几何结构时面临材料浪费、工艺限制和成本高昂等问题,而增材制造以其逐层累加的成型方式突破了这些局限,为复杂零件的高效生产提供了新途径。本研究旨在探讨增材制造技术在复杂机械零件制造中的应用潜力,并通过实验验证其可行性和优越性。研究采用选择性激光熔化(SLM)和熔融沉积建模(FDM)两种主流增材制造工艺,分别对金属和非金属材料进行加工测试,重点分析零件成形精度、力学性能及表面质量等关键指标。结果表明,增材制造能够实现传统方法难以完成的复杂内腔结构和拓扑优化设计,同时显著缩短开发周期并降低材料损耗。此外,通过对不同工艺参数的优化,进一步提升了零件的综合性能。本研究的创新点在于提出了一种基于多目标优化的工艺参数调控策略,有效解决了复杂零件制造中的变形与缺陷问题。主要贡献包括:一是建立了增材制造工艺与零件性能之间的量化关系模型;二是为复杂机械零件的设计与制造提供了系统化的解决方案。研究成果不仅拓展了增材制造技术的应用范围,还为其在航空航天、医疗设备和汽车工业等领域的深度应用奠定了理论和技术基础。
关键词:增材制造;复杂机械零件;选择性激光熔化;熔融沉积建模
Abstract
Additive manufacturing technology, as a significant branch of advanced manufacturing, has demonstrated remarkable advantages in the fabrication of complex mechanical components in recent years. Conventional manufacturing methods often encounter challenges such as material waste, process limitations, and high costs when dealing with complex geometries, whereas additive manufacturing overcomes these constraints through its layer-by-layer formation approach, offering a new pathway for the efficient production of complex parts. This study investigates the application potential of additive manufacturing in the fabrication of complex mechanical components and experimentally verifies its feasibility and superiority. Two mainstream additive manufacturing processes, selective laser melting (SLM) and fused deposition modeling (FDM), were employed to process me tallic and non-me tallic materials, respectively, with a focus on analyzing critical indicators such as forming accuracy, mechanical properties, and surface quality. The results indicate that additive manufacturing can achieve complex internal cavity structures and topology-optimized designs that are difficult to accomplish using traditional methods, while significantly reducing development cycles and material loss. Furthermore, optimizing different process parameters enhanced the overall performance of the fabricated components. An innovation of this study lies in proposing a multi-ob jective optimization-based process parameter control strategy, effectively addressing issues of deformation and defects in the manufacture of complex components. Key contributions include establishing a quantitative relationship model between additive manufacturing processes and component performance, and providing a systematic solution for the design and manufacture of complex mechanical components. The research not only expands the application scope of additive manufacturing technology but also lays a theoretical and technical foundation for its in-depth application in fields such as aerospace, medical equipment, and automotive industries.
Keywords:Additive Manufacturing;Complex Mechanical Parts;Selective Laser Melting;Fused Deposition Modeling
目 录
摘 要 I
Abstract II
引 言 1
第一章 增材制造技术概述 2
1.1 增材制造技术定义与分类 2
1.2 关键工艺流程解析 2
1.3 技术发展历程回顾 3
第二章 复杂机械零件制造需求分析 4
2.1 复杂机械零件特征定义 4
2.2 传统制造方法局限性 4
2.3 增材制造的优势体现 5
2.4 典型应用场景分析 5
第三章 增材制造在复杂零件中的应用实践 7
3.1 材料选择与性能优化 7
3.2 结构设计与可制造性 7
3.3 工艺参数调控策略 8
3.4 质量控制与检测方法 8
第四章 增材制造技术的挑战与未来方向 10
4.1 技术瓶颈与解决方案 10
4.2 成本效益分析与改进 10
4.3 标准化体系构建需求 11
4.4 跨领域融合发展趋势 11
4.5 未来研究重点展望 12
结 论 13
参考文献 14
致 谢 15
增材制造技术作为先进制造领域的重要分支,近年来在复杂机械零件制造中展现出显著优势。传统制造方法在处理复杂几何结构时面临材料浪费、工艺限制和成本高昂等问题,而增材制造以其逐层累加的成型方式突破了这些局限,为复杂零件的高效生产提供了新途径。本研究旨在探讨增材制造技术在复杂机械零件制造中的应用潜力,并通过实验验证其可行性和优越性。研究采用选择性激光熔化(SLM)和熔融沉积建模(FDM)两种主流增材制造工艺,分别对金属和非金属材料进行加工测试,重点分析零件成形精度、力学性能及表面质量等关键指标。结果表明,增材制造能够实现传统方法难以完成的复杂内腔结构和拓扑优化设计,同时显著缩短开发周期并降低材料损耗。此外,通过对不同工艺参数的优化,进一步提升了零件的综合性能。本研究的创新点在于提出了一种基于多目标优化的工艺参数调控策略,有效解决了复杂零件制造中的变形与缺陷问题。主要贡献包括:一是建立了增材制造工艺与零件性能之间的量化关系模型;二是为复杂机械零件的设计与制造提供了系统化的解决方案。研究成果不仅拓展了增材制造技术的应用范围,还为其在航空航天、医疗设备和汽车工业等领域的深度应用奠定了理论和技术基础。
关键词:增材制造;复杂机械零件;选择性激光熔化;熔融沉积建模
Abstract
Additive manufacturing technology, as a significant branch of advanced manufacturing, has demonstrated remarkable advantages in the fabrication of complex mechanical components in recent years. Conventional manufacturing methods often encounter challenges such as material waste, process limitations, and high costs when dealing with complex geometries, whereas additive manufacturing overcomes these constraints through its layer-by-layer formation approach, offering a new pathway for the efficient production of complex parts. This study investigates the application potential of additive manufacturing in the fabrication of complex mechanical components and experimentally verifies its feasibility and superiority. Two mainstream additive manufacturing processes, selective laser melting (SLM) and fused deposition modeling (FDM), were employed to process me tallic and non-me tallic materials, respectively, with a focus on analyzing critical indicators such as forming accuracy, mechanical properties, and surface quality. The results indicate that additive manufacturing can achieve complex internal cavity structures and topology-optimized designs that are difficult to accomplish using traditional methods, while significantly reducing development cycles and material loss. Furthermore, optimizing different process parameters enhanced the overall performance of the fabricated components. An innovation of this study lies in proposing a multi-ob jective optimization-based process parameter control strategy, effectively addressing issues of deformation and defects in the manufacture of complex components. Key contributions include establishing a quantitative relationship model between additive manufacturing processes and component performance, and providing a systematic solution for the design and manufacture of complex mechanical components. The research not only expands the application scope of additive manufacturing technology but also lays a theoretical and technical foundation for its in-depth application in fields such as aerospace, medical equipment, and automotive industries.
Keywords:Additive Manufacturing;Complex Mechanical Parts;Selective Laser Melting;Fused Deposition Modeling
目 录
摘 要 I
Abstract II
引 言 1
第一章 增材制造技术概述 2
1.1 增材制造技术定义与分类 2
1.2 关键工艺流程解析 2
1.3 技术发展历程回顾 3
第二章 复杂机械零件制造需求分析 4
2.1 复杂机械零件特征定义 4
2.2 传统制造方法局限性 4
2.3 增材制造的优势体现 5
2.4 典型应用场景分析 5
第三章 增材制造在复杂零件中的应用实践 7
3.1 材料选择与性能优化 7
3.2 结构设计与可制造性 7
3.3 工艺参数调控策略 8
3.4 质量控制与检测方法 8
第四章 增材制造技术的挑战与未来方向 10
4.1 技术瓶颈与解决方案 10
4.2 成本效益分析与改进 10
4.3 标准化体系构建需求 11
4.4 跨领域融合发展趋势 11
4.5 未来研究重点展望 12
结 论 13
参考文献 14
致 谢 15