摘要
镍基合金因其优异的高温性能在航空航天、能源等领域广泛应用,但高温氧化问题限制了其服役寿命。本研究旨在深入探讨镍基合金在高温环境下的氧化行为,并开发有效的防护涂层以提升其抗氧化性能。通过热重分析、扫描电子显微镜和X射线衍射等手段,系统研究了镍基合金在不同温度(800-1200°C)和气氛(空气、含水蒸气气氛)中的氧化动力学及氧化膜微观结构演变规律。结果表明,随着温度升高,氧化速率显著加快,且含水蒸气气氛加速了氧化进程。创新性地采用物理气相沉积技术制备了CrAlY涂层,该涂层与基体结合良好,在1100°C下表现出优异的抗氧化性能,有效抑制了氧化物的生长并向内扩散。此外,还研究了涂层成分对抗氧化性能的影响,发现适量增加铝含量可进一步提高涂层的保护效果。本研究不仅揭示了镍基合金高温氧化机制,还为实际应用中选择合适的防护涂层提供了理论依据和技术支持,具有重要的工程应用价值。
关键词:镍基合金;高温氧化;抗氧化涂层
Abstract
Nickel-based alloys are widely utilized in aerospace and energy sectors due to their superior high-temperature properties; however, high-temperature oxidation restricts their service life. This study aims to thoroughly investigate the oxidation behavior of nickel-based alloys under high-temperature conditions and develop effective protective coatings to enhance their oxidation resistance. Through thermogravimetric analysis, scanning electron microscopy, and X-ray diffraction, the oxidation kinetics and microstructural evolution of the oxide films on nickel-based alloys were systematically studied at various temperatures (800-1200°C) and atmospheres (air, water vapor-containing atmosphere). The results indicate that the oxidation rate significantly increases with temperature elevation, and the presence of water vapor accelerates the oxidation process. Innovatively, a CrAlY coating was prepared using physical vapor deposition technology, which exhibited excellent adhesion to the substrate and superior oxidation resistance at 1100°C, effectively inhibiting the growth and inward diffusion of oxides. Additionally, the influence of coating composition on oxidation resistance was examined, revealing that an appropriate increase in aluminum content can further improve the protective effect of the coating. This research not only elucidates the high-temperature oxidation mechanisms of nickel-based alloys but also provides theoretical basis and technical support for selecting suitable protective coatings in practical applications, demonstrating significant engineering application value.
Keywords:Nickel-Based Alloy; High-Temperature Oxidation; Anti-Oxidation Coating
目 录
摘要 I
Abstract II
一、绪论 1
(一) 镍基合金高温氧化研究背景 1
(二) 国内外研究现状综述 1
(三) 本文研究方法与思路 2
二、镍基合金高温氧化行为 2
(一) 氧化动力学特性分析 2
(二) 氧化膜形成机制探讨 3
(三) 温度对氧化行为的影响 4
三、防护涂层材料选择 4
(一) 涂层材料性能要求 4
(二) 常用防护涂层类型 5
(三) 涂层材料匹配性研究 5
四、防护涂层制备技术 6
(一) 物理气相沉积工艺 6
(二) 化学气相沉积工艺 7
(三) 热喷涂技术应用 8
结 论 9
参考文献 10
镍基合金因其优异的高温性能在航空航天、能源等领域广泛应用,但高温氧化问题限制了其服役寿命。本研究旨在深入探讨镍基合金在高温环境下的氧化行为,并开发有效的防护涂层以提升其抗氧化性能。通过热重分析、扫描电子显微镜和X射线衍射等手段,系统研究了镍基合金在不同温度(800-1200°C)和气氛(空气、含水蒸气气氛)中的氧化动力学及氧化膜微观结构演变规律。结果表明,随着温度升高,氧化速率显著加快,且含水蒸气气氛加速了氧化进程。创新性地采用物理气相沉积技术制备了CrAlY涂层,该涂层与基体结合良好,在1100°C下表现出优异的抗氧化性能,有效抑制了氧化物的生长并向内扩散。此外,还研究了涂层成分对抗氧化性能的影响,发现适量增加铝含量可进一步提高涂层的保护效果。本研究不仅揭示了镍基合金高温氧化机制,还为实际应用中选择合适的防护涂层提供了理论依据和技术支持,具有重要的工程应用价值。
关键词:镍基合金;高温氧化;抗氧化涂层
Abstract
Nickel-based alloys are widely utilized in aerospace and energy sectors due to their superior high-temperature properties; however, high-temperature oxidation restricts their service life. This study aims to thoroughly investigate the oxidation behavior of nickel-based alloys under high-temperature conditions and develop effective protective coatings to enhance their oxidation resistance. Through thermogravimetric analysis, scanning electron microscopy, and X-ray diffraction, the oxidation kinetics and microstructural evolution of the oxide films on nickel-based alloys were systematically studied at various temperatures (800-1200°C) and atmospheres (air, water vapor-containing atmosphere). The results indicate that the oxidation rate significantly increases with temperature elevation, and the presence of water vapor accelerates the oxidation process. Innovatively, a CrAlY coating was prepared using physical vapor deposition technology, which exhibited excellent adhesion to the substrate and superior oxidation resistance at 1100°C, effectively inhibiting the growth and inward diffusion of oxides. Additionally, the influence of coating composition on oxidation resistance was examined, revealing that an appropriate increase in aluminum content can further improve the protective effect of the coating. This research not only elucidates the high-temperature oxidation mechanisms of nickel-based alloys but also provides theoretical basis and technical support for selecting suitable protective coatings in practical applications, demonstrating significant engineering application value.
Keywords:Nickel-Based Alloy; High-Temperature Oxidation; Anti-Oxidation Coating
目 录
摘要 I
Abstract II
一、绪论 1
(一) 镍基合金高温氧化研究背景 1
(二) 国内外研究现状综述 1
(三) 本文研究方法与思路 2
二、镍基合金高温氧化行为 2
(一) 氧化动力学特性分析 2
(二) 氧化膜形成机制探讨 3
(三) 温度对氧化行为的影响 4
三、防护涂层材料选择 4
(一) 涂层材料性能要求 4
(二) 常用防护涂层类型 5
(三) 涂层材料匹配性研究 5
四、防护涂层制备技术 6
(一) 物理气相沉积工艺 6
(二) 化学气相沉积工艺 7
(三) 热喷涂技术应用 8
结 论 9
参考文献 10