摘要
车辆主动悬架系统作为提升汽车行驶平顺性和操控稳定性的关键部件,近年来受到广泛关注。传统被动悬架难以兼顾舒适性与操控性,而主动悬架通过实时调整阻尼力可有效改善车辆动态性能。本文针对车辆主动悬架系统的控制策略与性能评估展开研究,旨在建立一套高效、可靠的控制算法并对其性能进行全面评价。基于线性二次型最优控制理论,提出了一种改进的自适应模糊PID控制器,该控制器结合了模糊逻辑与PID控制的优点,能够根据车辆行驶状态自适应调整参数。通过搭建MATLAB/Simulink仿真平台,对不同工况下的悬架性能进行仿真分析,结果表明所提出的控制策略在车身加速度、悬架行程和轮胎动载荷等关键指标上均优于传统PID控制方法。此外,创新性地引入了多目标优化算法对控制器参数进行优化配置,进一步提升了系统的鲁棒性和适应性。最终通过实车试验验证了该控制策略的有效性,为车辆主动悬架系统的工程应用提供了理论依据和技术支持。研究表明,该控制策略不仅显著提高了车辆行驶平顺性和安全性,还为未来智能车辆的发展奠定了坚实基础。
关键词:车辆主动悬架系统;自适应模糊PID控制;线性二次型最优控制
Abstract
The vehicle active suspension system, as a critical component for enhancing ride comfort and handling stability, has garnered significant attention in recent years. Traditional passive suspensions struggle to balance comfort and handling performance, whereas active suspensions can effectively improve vehicle dynamic performance through real-time adjustment of damping forces. This study focuses on the control strategies and performance evaluation of vehicle active suspension systems, aiming to establish an efficient and reliable control algorithm and conduct a comprehensive performance assessment. Based on linear quadratic optimal control theory, an improved adaptive fuzzy PID controller is proposed, which integrates the advantages of fuzzy logic and PID control, enabling adaptive parameter adjustment according to the vehicle's operating conditions. A MATLAB/Simulink simulation platform was developed to analyze the suspension performance under various operating conditions. The results demonstrate that the proposed control strategy outperforms traditional PID control methods in key metrics such as body acceleration, suspension travel, and tire dynamic load. Additionally, a multi-ob jective optimization algorithm was innovatively introduced to optimize the controller parameters, further enhancing the system's robustness and adaptability. Finally, real-vehicle experiments validated the effectiveness of the control strategy, providing theoretical support and technical guidance for the engineering application of vehicle active suspension systems. The research indicates that this control strategy not only significantly improves ride smoothness and safety but also lays a solid foundation for the development of future intelligent vehicles.
Keywords:Vehicle Active Suspension System; Adaptive FuzzyPid Control; Linear Quadratic Optimal Control
目 录
摘要 I
Abstract II
一、绪论 1
(一) 车辆主动悬架系统研究背景与意义 1
(二) 国内外研究现状综述 1
(三) 本文研究方法与技术路线 2
二、主动悬架系统控制策略分析 2
(一) 控制策略分类与特点 2
(二) 常见控制算法比较 3
(三) 控制参数优化方法 4
三、主动悬架系统性能评估指标 4
(一) 悬架性能评价体系构建 4
(二) 平顺性与舒适性评估 5
(三) 安全性与操控稳定性测试 6
四、实验验证与结果分析 6
(一) 实验平台搭建与方案设计 6
(二) 不同工况下性能测试 7
(三) 测试数据分析与结论 8
结 论 9
参考文献 10
车辆主动悬架系统作为提升汽车行驶平顺性和操控稳定性的关键部件,近年来受到广泛关注。传统被动悬架难以兼顾舒适性与操控性,而主动悬架通过实时调整阻尼力可有效改善车辆动态性能。本文针对车辆主动悬架系统的控制策略与性能评估展开研究,旨在建立一套高效、可靠的控制算法并对其性能进行全面评价。基于线性二次型最优控制理论,提出了一种改进的自适应模糊PID控制器,该控制器结合了模糊逻辑与PID控制的优点,能够根据车辆行驶状态自适应调整参数。通过搭建MATLAB/Simulink仿真平台,对不同工况下的悬架性能进行仿真分析,结果表明所提出的控制策略在车身加速度、悬架行程和轮胎动载荷等关键指标上均优于传统PID控制方法。此外,创新性地引入了多目标优化算法对控制器参数进行优化配置,进一步提升了系统的鲁棒性和适应性。最终通过实车试验验证了该控制策略的有效性,为车辆主动悬架系统的工程应用提供了理论依据和技术支持。研究表明,该控制策略不仅显著提高了车辆行驶平顺性和安全性,还为未来智能车辆的发展奠定了坚实基础。
关键词:车辆主动悬架系统;自适应模糊PID控制;线性二次型最优控制
Abstract
The vehicle active suspension system, as a critical component for enhancing ride comfort and handling stability, has garnered significant attention in recent years. Traditional passive suspensions struggle to balance comfort and handling performance, whereas active suspensions can effectively improve vehicle dynamic performance through real-time adjustment of damping forces. This study focuses on the control strategies and performance evaluation of vehicle active suspension systems, aiming to establish an efficient and reliable control algorithm and conduct a comprehensive performance assessment. Based on linear quadratic optimal control theory, an improved adaptive fuzzy PID controller is proposed, which integrates the advantages of fuzzy logic and PID control, enabling adaptive parameter adjustment according to the vehicle's operating conditions. A MATLAB/Simulink simulation platform was developed to analyze the suspension performance under various operating conditions. The results demonstrate that the proposed control strategy outperforms traditional PID control methods in key metrics such as body acceleration, suspension travel, and tire dynamic load. Additionally, a multi-ob jective optimization algorithm was innovatively introduced to optimize the controller parameters, further enhancing the system's robustness and adaptability. Finally, real-vehicle experiments validated the effectiveness of the control strategy, providing theoretical support and technical guidance for the engineering application of vehicle active suspension systems. The research indicates that this control strategy not only significantly improves ride smoothness and safety but also lays a solid foundation for the development of future intelligent vehicles.
Keywords:Vehicle Active Suspension System; Adaptive FuzzyPid Control; Linear Quadratic Optimal Control
目 录
摘要 I
Abstract II
一、绪论 1
(一) 车辆主动悬架系统研究背景与意义 1
(二) 国内外研究现状综述 1
(三) 本文研究方法与技术路线 2
二、主动悬架系统控制策略分析 2
(一) 控制策略分类与特点 2
(二) 常见控制算法比较 3
(三) 控制参数优化方法 4
三、主动悬架系统性能评估指标 4
(一) 悬架性能评价体系构建 4
(二) 平顺性与舒适性评估 5
(三) 安全性与操控稳定性测试 6
四、实验验证与结果分析 6
(一) 实验平台搭建与方案设计 6
(二) 不同工况下性能测试 7
(三) 测试数据分析与结论 8
结 论 9
参考文献 10