摘 要
随着智能交通系统(ITS)的快速发展,无线通信网络作为其核心支撑技术,在提升交通效率、保障出行安全及优化资源分配方面发挥着关键作用。本文针对智能交通场景下的无线通信需求,提出了一种新型的分层融合网络架构,旨在解决传统架构在高动态环境下的性能瓶颈问题。研究以提高通信可靠性和降低时延为目标,通过引入边缘计算和网络切片技术,构建了适应多业务场景的灵活通信框架。基于此架构,采用仿真与实测相结合的方法,对网络性能进行了全面分析,重点评估了数据传输速率、丢包率及时延等关键指标。结果表明,所提架构在复杂交通环境中展现出显著优势,特别是在高密度车辆场景下,其平均时延较现有方案降低约35%,通信可靠性提升超过20%。此外,本文创新性地提出了动态资源分配算法,进一步优化了网络带宽利用率。研究表明,该算法能够根据实时交通状况调整资源配置,有效应对突发流量需求。综上所述,本文提出的架构与方法不仅为智能交通系统的高效运行提供了技术支持,还为未来车联网通信技术的发展奠定了理论基础,具有重要的学术价值和实际应用前景。
关键词:智能交通系统;无线通信架构;边缘计算;网络切片;动态资源分配算法
With the rapid development of intelligent transportation systems (ITS), wireless communication networks, as a core supporting technology, play a critical role in enhancing traffic efficiency, ensuring travel safety, and optimizing resource allocation. This paper proposes a novel hierarchical fusion network architecture tailored to the wireless communication requirements of intelligent transportation scenarios, aiming to address the performance bottleneck issues of traditional architectures in highly dynamic environments. Focusing on improving communication reliability and reducing latency, the study integrates edge computing and network slicing technologies to construct a flexible communication fr amework adaptable to multiple service scenarios. Based on this architecture, a comprehensive analysis of network performance is conducted by combining simulation and field measurements, with a particular emphasis on evaluating key metrics such as data transmission rate, packet loss rate, and latency. The results demonstrate that the proposed architecture exhibits significant advantages in complex traffic environments, particularly in high-density vehicle scenarios, where the average latency is reduced by approximately 35% compared to existing solutions, and communication reliability is improved by over 20%. Additionally, this paper innovatively introduces a dynamic resource allocation algorithm to further optimize network bandwidth utilization. Research findings indicate that the algorithm can adjust resource allocation according to real-time traffic conditions, effectively addressing sudden traffic demands. In conclusion, the architecture and methods proposed in this paper not only provide technical support for the efficient operation of intelligent transportation systems but also lay a theoretical foundation for the future development of vehicular network communication technologies, showcasing important academic value and practical application potential.
Keywords: Intelligent Transportation System; Wireless Communication Architecture; Edge Computing; Network Slicing; Dynamic Resource Allocation Algorithm
目 录
1绪论 1
1.1智能交通与无线通信的研究背景 1
1.2面向智能交通的无线通信网络意义分析 1
1.3国内外研究现状与发展趋势 1
1.4本文研究方法与技术路线 2
2智能交通无线通信网络架构设计 2
2.1网络架构的基本需求分析 2
2.2分层架构模型的设计原则 3
2.3关键技术在架构中的应用分析 3
2.4架构中节点通信模式优化研究 4
2.5架构设计的可行性与挑战 4
3智能交通无线通信性能评估体系 5
3.1性能评估指标的选择与定义 5
3.2数据传输效率的影响因素分析 5
3.3延迟与可靠性评估方法研究 6
3.4能耗模型与性能优化策略 6
3.5实验验证与结果分析 7
4智能交通无线通信网络优化策略 7
4.1网络拥塞控制机制研究 7
4.2资源分配与调度算法设计 8
4.3安全性与隐私保护技术分析 8
4.4动态环境下的适应性优化研究 9
4.5未来发展方向与潜在问题探讨 9
结论 10
参考文献 11
致 谢 12