摘 要
人工心脏瓣膜作为治疗心脏瓣膜疾病的重要手段,其生物力学性能直接影响临床效果和患者预后。本研究旨在深入探讨人工心脏瓣膜在生理环境下的力学行为及其优化设计策略。通过结合有限元分析与体外流体力学实验,研究了不同类型人工瓣膜在脉动血流条件下的应力分布、变形特性及流场特征。创新性地引入非线性材料模型以更准确地模拟瓣膜组织的力学响应,并开发了一种基于机器学习算法的优化框架,用于评估瓣膜几何结构对疲劳寿命的影响。结果表明,优化后的瓣膜设计显著降低了跨瓣压差和剪切应力集中,同时提高了耐久性和血液相容性。此外,研究发现瓣叶厚度和支撑架刚度的合理匹配是提升整体性能的关键因素。
关键词:人工心脏瓣膜 生物力学性能 有限元分析
Abstract
As an important treatment of heart valve disease, its biomechanical properties directly affect the clinical effect and patient prognosis. This study aims to deeply explore the mechanical behavior of artificial heart valves in physiological settings and their optimized design strategies. By combining finite element analysis and in vitro fluid dynamics, we studied the stress distribution, deformation characteristics and flow field characteristics of different types of artificial valves under pulsatile flow conditions. Nonlinear material models were innovatively introduced to more accurately simulate the mechanical response of valve tissue, and an optimization fr amework based on machine learning algorithms was developed to assess the impact of valve geometry on fatigue lifetime. The results showed that the optimized valve design significantly reduces cross-valve pressure difference and shear stress concentration while improving durability and blood compatibility. In addition, the study found that a reasonable match of leaflet thickness and support fr ame stiffness is the key factor to improve the overall performance.
Keyword:Artificial Heart Valve Biomechanical Performance Finite Element Analysis
目 录
1绪论 1
1.1人工心脏瓣膜研究背景与意义 1
1.2生物力学性能的研究现状分析 1
1.3本文研究方法与技术路线 2
2人工心脏瓣膜材料的生物力学特性 2
2.1材料选择对生物力学性能的影响 2
2.2不同材料的应力应变特性分析 3
2.3材料疲劳性能的实验研究 3
2.4材料表面改性对性能的优化 4
3心脏瓣膜结构设计与流体力学性能 4
3.1瓣膜几何结构对血流动力学的影响 4
3.2数值模拟在流体力学分析中的应用 5
3.3实验验证与仿真结果对比分析 5
3.4结构优化对生物力学性能的提升 5
4动态加载条件下的瓣膜性能评估 6
4.1模拟生理环境的加载条件设定 6
4.2动态加载下瓣膜的开启与关闭特性 6
4.3长期动态测试中的耐久性分析 7
4.4测试结果对临床应用的指导意义 7
结论 8
参考文献 9
致谢 10