摘 要
温度控制在工业生产、能源管理及环境调节等领域具有重要地位,然而复杂的干扰因素和非线性特性使得传统控制方法难以满足高精度与快速响应的需求。为此,本文以PID控制为核心,设计并优化了一种基于改进型PID算法的温度控制系统。研究首先分析了现有PID控制在动态性能和抗干扰能力方面的不足,并结合实际应用场景提出了引入自适应调整机制的改进方案。通过建立数学模型对系统进行仿真验证,同时采用Ziegler-Nichols方法完成参数整定,进一步提升了控制系统的稳定性和鲁棒性。实验结果表明,该系统在阶跃响应中表现出更小的超调量和更快的调节时间,且在外部扰动下仍能保持良好的跟踪性能。此外,本文创新性地将模糊逻辑与PID控制相结合,形成一种复合控制策略,有效解决了传统PID控制器在非线性系统中的局限性问题。这一改进显著提高了系统的适应能力和控制精度,为复杂工况下的温度控制提供了新的解决思路。综上所述,本研究不仅验证了改进型PID控制在温度调节领域的可行性,还为相关技术的实际应用奠定了理论基础,具有重要的学术价值和工程意义。
关键词:温度控制;改进型PID算法;自适应调整;模糊逻辑;控制系统优化
ABSTRACT
Temperature control plays a crucial role in industrial production, energy management, and environmental regulation; however, complex disturbances and nonlinear characteristics make it challenging for traditional control methods to meet the demands of high precision and rapid response. To address this issue, this study focuses on PID control and designs an optimized temperature control system based on an improved PID algorithm. The research first analyzes the deficiencies of existing PID control in dynamic performance and disturbance rejection capability, proposing an improvement plan by introducing an adaptive adjustment mechanism tailored to practical application scenarios. A mathematical model is established for simulation verification, and the Ziegler-Nichols method is employed for parameter tuning, further enhancing the stability and robustness of the control system. Experimental results indicate that the system exhibits reduced overshoot and faster settling time in step responses while maintaining satisfactory tracking performance under external disturbances. Additionally, this study innovatively integrates fuzzy logic with PID control to form a compound control strategy, effectively addressing the limitations of traditional PID controllers in nonlinear systems. This improvement significantly enhances the adaptability and control accuracy of the system, providing a novel solution for temperature control under complex operating conditions. In summary, this research not only verifies the feasibility of the improved PID control in temperature regulation but also lays a theoretical foundation for the practical application of related technologies, demonstrating significant academic value and engineering significance.
Keywords: Temperature Control; Improved Pid Algorithm; Adaptive Adjustment; Fuzzy Logic; Control System Optimization
目 录
摘 要 I
ABSTRACT II
第1章 绪论 1
1.1 温度控制系统的研究背景与意义 1
1.2 PID控制技术的发展现状分析 1
1.3 本文研究方法与技术路线 2
第2章 PID控制理论基础与系统建模 3
2.1 PID控制器的基本原理与特性 3
2.2 温度控制系统的数学建模方法 3
2.3 系统动态特性的分析与优化目标 4
2.4 基于MATLAB的PID参数仿真验证 4
第3章 温度控制系统的硬件设计与实现 6
3.1 控制系统硬件架构的设计原则 6
3.2 温度传感器的选择与校准方法 6
3.3 加热装置与执行机构的选型分析 7
3.4 硬件电路的搭建与调试过程 7
第4章 PID控制算法优化与性能评估 9
4.1 PID参数整定的经典方法比较 9
4.2 基于智能算法的PID参数优化策略 9
4.3 系统抗干扰能力的测试与改进措施 10
4.4 温度控制系统性能指标的综合评估 10
结论 12
参考文献 13
致 谢 14