摘 要
随着全球能源转型和可再生能源的快速发展,电力系统正面临前所未有的复杂性和不确定性挑战。传统电力系统的稳定性分析与控制方法已难以适应现代电网中高比例新能源接入、多类型负荷特性和复杂动态交互的需求。为此,本文围绕电力系统稳定性分析与控制策略展开深入研究,旨在提出适用于复杂电力系统的高效分析方法与优化控制方案。研究首先构建了基于数据驱动与物理模型融合的电力系统动态特性分析框架,通过引入深度学习算法和时序预测模型,显著提升了对系统暂态稳定性和小干扰稳定性的评估精度。其次,针对新能源波动性带来的功率平衡问题,设计了一种多目标协同优化控制策略,结合储能系统与灵活负荷调节能力,实现了系统频率稳定性的有效维持。此外,本文创新性地提出了基于事件触发机制的分布式控制方法,以降低通信负担并提高控制效率。仿真结果表明,所提方法在多种典型工况下均表现出优异的性能,能够显著提升电力系统的稳定运行水平。研究结论为未来高比例新能源电力系统的规划与运行提供了重要理论支撑和技术参考,同时为实现电力系统的安全、可靠与经济运行奠定了坚实基础。
关键词:电力系统稳定性;数据驱动与物理模型融合;多目标协同优化控制;事件触发分布式控制;新能源波动性功率平衡
ABSTRACT
With the global energy transition and the rapid development of renewable energy, power systems are facing unprecedented challenges in complexity and uncertainty. Traditional stability analysis and control methods for power systems struggle to meet the demands of modern grids with high penetration of new energy sources, diverse load characteristics, and complex dynamic interactions. To address these issues, this study conducts an in-depth investigation into the stability analysis and control strategies of power systems, aiming to propose efficient analytical methods and optimized control solutions suitable for complex power systems. Initially, a dynamic characteristic analysis fr amework integrating data-driven approaches with physical models is constructed, where the introduction of deep learning algorithms and time-series prediction models significantly enhances the accuracy of assessing transient stability and small-signal stability. Furthermore, in response to power balance problems caused by the fluctuation of renewable energy, a multi-ob jective协同optimization control strategy is designed, leveraging the capabilities of energy storage systems and flexible load regulation to effectively maintain system frequency stability. Additionally, an innovative distributed control method based on event-triggering mechanisms is proposed to reduce communication burdens and improve control efficiency. Simulation results demonstrate that the proposed methods exhibit superior performance under various typical operating conditions, substantially enhancing the stable operation level of power systems. The conclusions of this study provide critical theoretical support and technical references for the planning and operation of future power systems with high proportions of renewable energy, while laying a solid foundation for achieving safe, reliable, and economical operation of power systems.
Keywords: Power System Stability; Data-Driven And Physical Model Fusion; Multi-ob jective Collaborative Optimal Control; Event-Triggered Distributed Control; New Energy Fluctuation Power Balance
目 录
摘 要 I
ABSTRACT II
第1章 绪论 2
1.1 电力系统稳定性研究背景与意义 2
1.2 国内外研究现状综述 2
1.3 本文研究方法与技术路线 3
第2章 电力系统稳定性基础理论分析 4
2.1 稳定性定义与分类 4
2.2 小扰动稳定性分析方法 4
2.3 大扰动稳定性评估框架 5
2.4 暂态稳定性的关键因素 5
第3章 电力系统稳定性影响因素研究 7
3.1 负荷波动对稳定性的影响 7
3.2 新能源接入的挑战与机遇 7
3.3 故障类型与系统响应特性 8
3.4 控制设备性能对稳定性的作用 8
第4章 电力系统控制策略优化研究 10
4.1 常规控制策略的局限性分析 10
4.2 智能控制技术在稳定性中的应用 10
4.3 分布式电源协调控制策略 11
4.4 稳定性增强的仿真验证与案例分析 11
结论 13
参考文献 14
致 谢 15