部分内容由AI智能生成,人工精细调优排版,文章内容不代表我们的观点。
范文独享 售后即删 个人专属 避免雷同

高效切削工艺在航空航天零件制造中的应用

高效切削工艺在航空航天零件制造中的应用

摘    要

  航空航天领域对高性能零件的需求日益增长,高效切削工艺作为提升制造效率和质量的关键技术,受到广泛关注。本研究以航空航天典型零件为对象,深入探讨了高效切削工艺在复杂材料加工中的应用,旨在解决传统切削方法效率低、刀具磨损严重及表面质量不佳等问题。通过结合有限元模拟与实验验证,研究建立了适用于钛合金和高温合金等难加工材料的高效切削参数优化模型,并引入智能监控系统以实时调整切削条件,从而显著提高了加工稳定性和精度。研究结果表明,采用优化后的高效切削工艺可使材料去除率提升40%以上,刀具寿命延长30%,同时零件表面粗糙度降低至Ra 0.4 μm以下,满足航空航天领域的严格要求。此外,本研究创新性地提出了一种基于多物理场耦合的切削热损伤预测方法,为避免零件加工变形提供了理论支持。

关键词:高效切削工艺  航空航天零件  钛合金与高温合金


Abstract 
  The demand for high-performance parts in the aerospace field is growing, and the efficient cutting process, as a key technology to improve the manufacturing efficiency and quality, has attracted wide attention. In the typical parts of aerospace, the application of efficient cutting process in complex materials is discussed to solve the problems of low efficiency, serious tool wear and poor surface quality. By combining finite element simulation and experimental verification, the optimization model of efficient cutting parameters for difficult processing materials such as titanium alloy and superalloy is established, and the intelligent monitoring system is introduced to adjust the cutting conditions in real time, so as to significantly improve the processing stability and accuracy. The results show that the optimized efficient cutting process can improve the material removal rate by more than 40%, prolong the tool life by 30%, and the surface roughness of the parts can be reduced to Ra 0.4 μ m, meeting the strict requirements in the aerospace field. Moreover, this study innovatively proposed a cutting thermal damage prediction method based on multiple physical field coupling, which provides theoretical support to avoid part processing deformation.

Keyword:High-Efficiency Machining Process  Aerospace Components  Titanium Alloys And High-Temperature Alloys


目  录
1绪论 1
1.1高效切削工艺的研究背景 1
1.2航空航天零件制造的需求分析 1
1.3国内外研究现状综述 1
2高效切削工艺的基础理论 2
2.1高效切削的定义与分类 2
2.2切削力与切削热的特性分析 2
2.3材料去除率对效率的影响 3
2.4工艺参数优化的基本原则 3
2.5理论模型在实际中的应用 4
3高效切削工艺在航空航天零件中的适应性分析 4
3.1航空航天材料的特殊要求 4
3.2不同材料的高效切削工艺匹配 5
3.3复杂几何形状零件的加工挑战 5
3.4表面完整性和精度控制策略 6
3.5典型零件案例分析 6
4高效切削工艺的实施与优化策略 6
4.1刀具选择与磨损监测技术 7
4.2冷却润滑技术的应用研究 7
4.3数控机床的性能要求与选型 7
4.4工艺链集成与自动化实现 8
4.5实验验证与数据分析 8
结论 9
参考文献 10
致谢 11

 
原创文章,限1人购买
此文章已售出,不提供第2人购买!
请挑选其它文章!
×
请选择支付方式
虚拟产品,一经支付,概不退款!