摘 要
随着5G技术的逐步普及和6G研究的深入开展,高频段通信因其丰富的频谱资源成为未来无线通信发展的关键方向。然而,高频段通信面临诸多技术挑战,包括路径损耗大、穿透能力弱、硬件非理想性以及复杂信道环境等问题。为解决上述难题,本文系统分析了高频段通信的核心挑战,并提出了一系列创新性的解决方案。研究首先通过理论建模与仿真验证相结合的方法,深入探讨了毫米波及太赫兹频段传播特性对通信性能的影响;其次,针对硬件非理想性问题,引入先进的校准算法与优化设计策略,显著提升了系统的线性度与能效表现;此外,结合机器学习技术,提出了一种自适应波束成形方案,有效改善了动态场景下的链路稳定性。
关键词:高频段通信 毫米波与太赫兹频段 硬件非理想性校正
Abstract
With the gradual popularization of 5G technology and the in-depth development of 6G research, high-frequency band communication has become the key direction of the future development of wireless communication because of its rich spectrum resources. However, high-frequency band communication faces many technical challenges, including large path loss, weak penetration capability, non-ideal hardware, and complex channel environment. In order to solve the above problems, this paper systematically analyzes the core challenges of high-frequency band communication, and proposes a series of innovative solutions. Secondly, advanced calibration algorithm and optimization design strategy are introduced to improve the linearity and energy efficiency, combined with machine learning technology, an adaptive beam forming scheme is proposed, which effectively improves the link stability in dynamic scenarios.
Keyword:High Frequency Communication Millimeter Wave And Terahertz Band Hardware Non-Idealities Correction
目 录
1绪论 1
1.1高频段通信技术的研究背景 1
1.2高频段通信技术的关键意义 1
1.3国内外研究现状分析 1
1.4本文研究方法与技术路线 2
2高频段通信的传播特性挑战与优化 2
2.1高频段信号传播损耗分析 2
2.2多径效应及其对通信的影响 2
2.3环境因素对高频段传播的干扰 3
2.4传播模型的改进与优化策略 3
2.5实验验证与性能评估 4
3高频段通信硬件设计的关键问题与解决路径 4
3.1高频段天线的设计与优化 4
3.2射频前端模块的技术挑战 5
3.3功率放大器效率提升方案 5
3.4硬件小型化与集成化需求 6
3.5新型材料的应用与前景 6
4高频段通信系统中的关键技术与实现 6
4.1波束成形技术的原理与应用 6
4.2大规模 7
4.3数据传输速率与可靠性权衡 7
4.4信道估计与反馈机制优化 8
4.5系统级仿真与性能测试 8
结论 9
参考文献 10
致谢 11
随着5G技术的逐步普及和6G研究的深入开展,高频段通信因其丰富的频谱资源成为未来无线通信发展的关键方向。然而,高频段通信面临诸多技术挑战,包括路径损耗大、穿透能力弱、硬件非理想性以及复杂信道环境等问题。为解决上述难题,本文系统分析了高频段通信的核心挑战,并提出了一系列创新性的解决方案。研究首先通过理论建模与仿真验证相结合的方法,深入探讨了毫米波及太赫兹频段传播特性对通信性能的影响;其次,针对硬件非理想性问题,引入先进的校准算法与优化设计策略,显著提升了系统的线性度与能效表现;此外,结合机器学习技术,提出了一种自适应波束成形方案,有效改善了动态场景下的链路稳定性。
关键词:高频段通信 毫米波与太赫兹频段 硬件非理想性校正
Abstract
With the gradual popularization of 5G technology and the in-depth development of 6G research, high-frequency band communication has become the key direction of the future development of wireless communication because of its rich spectrum resources. However, high-frequency band communication faces many technical challenges, including large path loss, weak penetration capability, non-ideal hardware, and complex channel environment. In order to solve the above problems, this paper systematically analyzes the core challenges of high-frequency band communication, and proposes a series of innovative solutions. Secondly, advanced calibration algorithm and optimization design strategy are introduced to improve the linearity and energy efficiency, combined with machine learning technology, an adaptive beam forming scheme is proposed, which effectively improves the link stability in dynamic scenarios.
Keyword:High Frequency Communication Millimeter Wave And Terahertz Band Hardware Non-Idealities Correction
目 录
1绪论 1
1.1高频段通信技术的研究背景 1
1.2高频段通信技术的关键意义 1
1.3国内外研究现状分析 1
1.4本文研究方法与技术路线 2
2高频段通信的传播特性挑战与优化 2
2.1高频段信号传播损耗分析 2
2.2多径效应及其对通信的影响 2
2.3环境因素对高频段传播的干扰 3
2.4传播模型的改进与优化策略 3
2.5实验验证与性能评估 4
3高频段通信硬件设计的关键问题与解决路径 4
3.1高频段天线的设计与优化 4
3.2射频前端模块的技术挑战 5
3.3功率放大器效率提升方案 5
3.4硬件小型化与集成化需求 6
3.5新型材料的应用与前景 6
4高频段通信系统中的关键技术与实现 6
4.1波束成形技术的原理与应用 6
4.2大规模 7
4.3数据传输速率与可靠性权衡 7
4.4信道估计与反馈机制优化 8
4.5系统级仿真与性能测试 8
结论 9
参考文献 10
致谢 11