电化学储能技术在可再生能源系统中的应用
摘 要
随着可再生能源在能源结构中的占比不断提升,其固有的间歇性和波动性对电网稳定性提出了严峻挑战。电化学储能技术因其快速响应、灵活配置等优势,成为解决可再生能源并网问题的关键技术之一。本研究系统分析了锂离子电池、液流电池和超级电容器等主流电化学储能技术的性能特征,构建了多时间尺度储能容量优化配置模型,提出了一种基于深度强化学习的储能系统协同控制策略。通过仿真实验和实际案例分析,验证了所提方法在提升可再生能源消纳率、降低系统运行成本方面的有效性。采用混合储能系统可显著提高可再生能源系统的经济性和可靠性,其中锂离子电池与超级电容器的组合方案在平抑功率波动方面表现最优,而全钒液流电池在大规模长时间储能场景中具有明显优势。
关键词:电化学储能 可再生能源并网 混合储能系统
Abstract
With the increasing proportion of renewable energy in the energy structure, its inherent intermittence and volatility pose a severe challenge to the stability of the power grid. Electrochemical energy storage technology has become one of the key technologies to solve the grid connection problem of renewable energy due to its advantages of rapid response and flexible configuration. In this study, the performance characteristics of mainstream electrochemical energy storage technologies such as lithium ion batteries, flow batteries and supercapacitors are systematically analyzed, a multi-time scale energy storage capacity optimal configuration model is constructed, and a collaborative control strategy of energy storage system based on deep reinforcement learning is proposed. Through the simulation experiment and the actual case analysis, the effectiveness of the proposed method in improving the consumption rate of renewable energy and reducing the system operation cost is verified. The adoption of hybrid energy storage system can significantly improve the economy and reliability of renewable energy system, and the combination scheme of lithium ion battery and supercapacitor performs the best in suppressing power fluctuations, while vanadium liquid flow battery has obvious advantages in large-scale and long-time energy storage scenarios.
Keyword: Electrochemical energy storage renewable energy grid connected hybrid energy storage system
目 录
1引言 1
2新型光催化材料的基本特性 1
2.1光催化材料的组成与结构特征 1
2.2光催化反应机理分析 2
2.3材料性能评价指标体系 2
3空气污染物降解机制研究 3
3.1典型空气污染物的化学特性 3
3.2光催化降解反应路径分析 3
3.3影响降解效率的关键因素 4
4新型光催化材料的制备与优化 4
4.1材料制备方法比较研究 4
4.2表面改性技术应用 5
4.3复合材料的协同效应 5
5实际应用中的性能评估与优化 6
5.1实验室条件下的性能测试 6
5.2实际环境中的应用效果评估 6
5.3系统集成与工程化应用 7
6结论 7
参考文献 9
致谢 10
摘 要
随着可再生能源在能源结构中的占比不断提升,其固有的间歇性和波动性对电网稳定性提出了严峻挑战。电化学储能技术因其快速响应、灵活配置等优势,成为解决可再生能源并网问题的关键技术之一。本研究系统分析了锂离子电池、液流电池和超级电容器等主流电化学储能技术的性能特征,构建了多时间尺度储能容量优化配置模型,提出了一种基于深度强化学习的储能系统协同控制策略。通过仿真实验和实际案例分析,验证了所提方法在提升可再生能源消纳率、降低系统运行成本方面的有效性。采用混合储能系统可显著提高可再生能源系统的经济性和可靠性,其中锂离子电池与超级电容器的组合方案在平抑功率波动方面表现最优,而全钒液流电池在大规模长时间储能场景中具有明显优势。
关键词:电化学储能 可再生能源并网 混合储能系统
Abstract
With the increasing proportion of renewable energy in the energy structure, its inherent intermittence and volatility pose a severe challenge to the stability of the power grid. Electrochemical energy storage technology has become one of the key technologies to solve the grid connection problem of renewable energy due to its advantages of rapid response and flexible configuration. In this study, the performance characteristics of mainstream electrochemical energy storage technologies such as lithium ion batteries, flow batteries and supercapacitors are systematically analyzed, a multi-time scale energy storage capacity optimal configuration model is constructed, and a collaborative control strategy of energy storage system based on deep reinforcement learning is proposed. Through the simulation experiment and the actual case analysis, the effectiveness of the proposed method in improving the consumption rate of renewable energy and reducing the system operation cost is verified. The adoption of hybrid energy storage system can significantly improve the economy and reliability of renewable energy system, and the combination scheme of lithium ion battery and supercapacitor performs the best in suppressing power fluctuations, while vanadium liquid flow battery has obvious advantages in large-scale and long-time energy storage scenarios.
Keyword: Electrochemical energy storage renewable energy grid connected hybrid energy storage system
目 录
1引言 1
2新型光催化材料的基本特性 1
2.1光催化材料的组成与结构特征 1
2.2光催化反应机理分析 2
2.3材料性能评价指标体系 2
3空气污染物降解机制研究 3
3.1典型空气污染物的化学特性 3
3.2光催化降解反应路径分析 3
3.3影响降解效率的关键因素 4
4新型光催化材料的制备与优化 4
4.1材料制备方法比较研究 4
4.2表面改性技术应用 5
4.3复合材料的协同效应 5
5实际应用中的性能评估与优化 6
5.1实验室条件下的性能测试 6
5.2实际环境中的应用效果评估 6
5.3系统集成与工程化应用 7
6结论 7
参考文献 9
致谢 10