新型光催化材料在空气净化中的应用

新型光催化材料在空气净化中的应用

摘    要

随着城市化进程加快,空气污染问题日益严峻,开发高效、可持续的空气净化技术成为当前环境治理的重要课题。本研究聚焦新型光催化材料在空气净化领域的应用,旨在通过材料设计与性能优化提升污染物降解效率。研究采用溶胶-凝胶法制备了具有分级多孔结构的TiO2-ZnO复合光催化剂,并通过X射线衍射、扫描电镜和紫外-可见漫反射光谱等技术对材料进行表征。实验结果表明,所制备的复合材料在可见光区域表现出显著的光响应特性,其比表面积达到125.6 m²/g,较传统TiO2提高了约40%。在模拟室内空气环境下,该材料对甲醛的降解效率达到92.3%,且在连续运行100小时后仍保持85%以上的活性。通过密度泛函理论计算揭示了ZnO与TiO2界面处的电子转移机制,证实了异质结结构对光生载流子分离效率的提升作用。

关键词:光催化材料  空气净化  分级多孔结构

Abstract 
With the acceleration of urbanization, the problem of air pollution is increasingly serious, and the development of efficient and sustainable air purification technology has become an important topic of current environmental governance. This study focuses on the application of new photocatalytic materials in the field of air purification, aiming to improve the efficiency of pollutant degradation through material design and performance optimization. In this study, TiO2-ZnO composite photocatalysts with hierarchical porous structure were prepared by sol-gel method, and the materials were characterized by X-ray diffraction, scanning electron microscopy, and UV-visible diffuse reflection spectroscopy. The experimental results showed that the prepared composites showed significant light response properties in the visible region, with a specific surface area of 125.6 m² / g, which is about 40% higher than the conventional TiO 2. Under the simulated indoor air environment, the degradation efficiency of the material on formaldehyde reached 92.3%, and remained more than 85% activity after 100 hours of continuous operation. The electron transfer mechanism at the interface between ZnO and TiO2 is revealed by density functional theory calculations, which confirms the enhancement effect of heterojunction structure on the separation efficiency of photoborne carriers. 

Keyword: Photocatalytic material  air purification  graded porous structure

目    录
1引言 1
2新型光催化材料的基本特性 1
2.1光催化材料的组成与结构特征 1
2.2光催化反应机理分析 2
2.3材料性能评价指标体系 2
3空气污染物降解机制研究 3
3.1典型空气污染物的化学特性 3
3.2光催化降解反应路径分析 3
3.3影响降解效率的关键因素 4
4新型光催化材料的制备与优化 4
4.1材料制备方法比较研究 4
4.2表面改性技术应用 5
4.3复合材料的协同效应 5
5实际应用中的性能评估与优化 6
5.1实验室条件下的性能测试 6
5.2实际环境中的应用效果评估 6
5.3系统集成与工程化应用 7
6结论 7
参考文献 9
致谢 10


扫码免登录支付
原创文章,限1人购买
是否支付35元后完整阅读并下载?

如果您已购买过该文章,[登录帐号]后即可查看

已售出的文章系统将自动删除,他人无法查看

阅读并同意:范文仅用于学习参考,不得作为毕业、发表使用。

×
请选择支付方式
虚拟产品,一经支付,概不退款!