部分内容由AI智能生成,人工精细调优排版,文章内容不代表我们的观点。
范文独享 售后即删 个人专属 避免雷同

生物反应器中传质与混合特性的数值模拟与改进

摘 要

生物反应器作为现代生物技术产业的核心设备,其传质与混合特性直接影响产物的生成效率和质量。然而,传统设计中往往存在传质效率低、能耗高及混合不均匀等问题,限制了其在工业规模中的应用。为此,本研究基于计算流体力学(CFD)方法,对生物反应器内部的流场分布、传质特性和混合行为进行了系统数值模拟,并提出了针对性的结构改进方案。通过构建三维模型并结合湍流模型与多相流理论,研究分析了搅拌速度、桨叶类型及气泡分布等关键参数对反应器性能的影响规律。结果表明,优化后的反应器设计显著提高了氧气传递系数(kLa),降低了剪切力对细胞的损伤,并实现了更均匀的混合效果。此外,本研究首次引入了一种新型组合式桨叶结构,该结构能够在保证高效传质的同时减少能量消耗,为工业放大提供了重要的理论依据和技术支持。总体而言,本研究不仅深化了对生物反应器内部复杂流动机制的理解,还为未来设备的设计与优化提供了创新思路和实用方法,具有重要的学术价值和工程意义。


关键词:生物反应器;传质特性;计算流体力学;桨叶结构优化;氧气传递系数

Abstract

Bioreactors, as the core equipment of modern biotechnology industries, have their mass transfer and mixing characteristics directly impacting the efficiency and quality of product generation. However, traditional designs often suffer from low mass transfer efficiency, high energy consumption, and non-uniform mixing, which restrict their application at industrial scales. To address these issues, this study employed computational fluid dynamics (CFD) methods to systematically simulate the flow field distribution, mass transfer characteristics, and mixing behavior within bioreactors, proposing targeted structural improvement schemes. By constructing three-dimensional models and integrating turbulence models with multiphase flow theory, the influence of key parameters such as stirring speed, impeller type, and bubble distribution on reactor performance was analyzed. The results demonstrated that the optimized reactor design significantly enhanced the oxygen transfer coefficient (kLa), reduced shear-induced cell damage, and achieved more uniform mixing effects. Furthermore, this study introduced for the first time a novel hybrid impeller structure, which can maintain high mass transfer efficiency while reducing energy consumption, providing critical theoretical support and technical guidance for scale-up processes. Overall, this research not only deepened the understanding of complex flow mechanisms within bioreactors but also offered innovative ideas and practical approaches for future equipment design and optimization, holding significant academic and engineering implications.


Keywords: Bioreactor; Mass Transfer Characteristics; Computational Fluid Dynamics; Impeller Structure Optimization; Oxygen Transfer Coefficient

目  录
1绪论 1
1.1生物反应器传质与混合特性研究背景 1
1.2传质与混合特性数值模拟的研究意义 1
1.3国内外研究现状与发展趋势 1
1.4本文研究方法与技术路线 2
2生物反应器中传质特性的数值模拟 2
2.1传质过程的基本理论与模型构建 2
2.2数值模拟方法的选择与优化 3
2.3不同操作条件下的传质效率分析 3
2.4关键参数对传质特性的影响研究 4
2.5模拟结果的验证与误差分析 4
3生物反应器中混合特性的数值模拟 4
3.1混合过程的动力学机制分析 5
3.2混合特性的数值建模与求解方法 5
3.3流场分布对混合效果的影响研究 6
3.4搅拌速度与剪切力的作用探讨 6
3.5模拟结果的实验对比与改进策略 7
4生物反应器传质与混合特性的改进研究 7
4.1改进目标与设计原则的确立 7
4.2结构优化对传质与混合性能的影响 8
4.3新型搅拌方式的探索与应用 8
4.4控制策略对系统性能的提升作用 8
4.5改进方案的综合评价与展望 9
结论 10
参考文献 11
致    谢 12

 
扫码免登录支付
原创文章,限1人购买
是否支付42元后完整阅读并下载?

如果您已购买过该文章,[登录帐号]后即可查看

已售出的文章系统将自动删除,他人无法查看

阅读并同意:范文仅用于学习参考,不得作为毕业、发表使用。

×
请选择支付方式
虚拟产品,一经支付,概不退款!