摘 要
随着能源转型和可再生能源技术的快速发展,分布式电源(Distributed Generation, DG)在电力系统中的渗透率持续提升,其接入对电网稳定性的影响已成为研究热点。本文旨在探讨分布式电源接入对电力系统稳定性的作用机制,并提出相应的优化策略。研究首先分析了分布式电源的特性及其与传统电力系统的交互影响,重点考察电压稳定、频率波动和谐波畸变等问题。基于此,采用改进的时域仿真方法和多目标优化算法,构建了包含分布式电源动态特性的电力系统模型,以量化其对系统稳定性的影响程度。研究结果表明,分布式电源的大规模接入可能引发局部电压越限、频率调节能力下降以及谐振风险增加等问题,但通过合理配置控制策略和优化布局,可以显著改善系统的整体性能。本文创新性地提出了一种结合机器学习预测与自适应控制的优化框架,能够在不同运行场景下实现分布式电源的最佳调度与协调控制。该框架不仅提升了系统的稳定性,还兼顾了经济性和环保效益。研究结论为分布式电源的规划与运行提供了理论支持和技术参考,对推动高比例可再生能源电力系统的安全稳定运行具有重要意义。关键词:分布式电源;电力系统稳定性;优化策略;时域仿真;机器学习预测
Abstract
With the rapid development of energy transition and renewable energy technologies, the penetration rate of distributed generation (DG) in power systems has been continuously increasing, and its impact on grid stability has become a research hotspot. This paper aims to investigate the mechanisms by which DG integration affects power system stability and proposes corresponding optimization strategies. The study first analyzes the characteristics of DG and its interaction effects with conventional power systems, focusing on issues such as voltage stability, frequency fluctuations, and harmonic distortions. Based on this analysis, an improved time-domain simulation method combined with a multi-ob jective optimization algorithm is employed to construct a power system model that incorporates the dynamic characteristics of DG, thereby quantifying its impact on system stability. The results indicate that large-scale DG integration may lead to local voltage violations, reduced frequency regulation capability, and increased resonance risks. However, these challenges can be significantly mitigated through appropriate control strategies and optimized placement of DG units. Innovatively, this paper proposes an optimization fr amework that integrates machine learning-based prediction with adaptive control, enabling optimal scheduling and coordinated control of DG under various operational scenarios. This fr amework not only enhances system stability but also balances economic efficiency and environmental benefits. The conclusions provide theoretical support and technical references for the planning and operation of DG, contributing significantly to the secure and stable operation of high-renewable-proportion power systems..
Key Words:Distributed Generation;Power System Stability;Optimization Strategy;Time-Domain Simulation;Machine Learning Prediction
目 录
摘 要 I
Abstract II
第1章 绪论 1
1.1 分布式电源接入的背景与意义 1
1.2 国内外研究现状分析 1
1.3 本文研究方法与技术路线 2
第2章 分布式电源接入对电力系统稳定性的影响机制 3
2.1 分布式电源的基本特性及其分类 3
2.2 电压稳定性的影响因素分析 3
2.3 频率稳定性的变化机理探讨 4
2.4 功率波动对系统动态行为的作用 4
第3章 分布式电源接入引发的稳定性挑战及评估方法 6
3.1 稳定性评估指标体系构建 6
3.2 仿真模型与工具的选择与应用 6
3.3 不同场景下的稳定性问题分析 7
3.4 关键技术难点与应对思路 7
第4章 分布式电源接入的优化策略研究 9
4.1 优化目标与约束条件设定 9
4.2 储能系统在稳定性提升中的作用 9
4.3 智能控制技术的应用与效果评估 10
4.4 多源协同优化的实现路径 10
结 论 11
参考文献 12
致 谢 13