摘 要
随着现代工业和信息技术的快速发展,电力系统中非线性负荷的增加导致电能质量问题日益突出,这对电网的安全稳定运行及用户设备的正常工作构成了严重威胁。为应对这一挑战,本文以提升电力系统的电能质量为目标,深入分析了谐波、电压波动与闪变、三相不平衡等典型电能质量问题的成因及其影响,并提出了针对性的改善措施。研究采用理论分析与仿真验证相结合的方法,基于MATLAB/Simulink平台构建了电力系统模型,对不同工况下的电能质量进行了量化评估。同时,引入先进的滤波技术和补偿策略,如有源电力滤波器(APF)和动态电压恢复器(DVR),并优化其控制算法以提高响应速度和补偿精度。结果表明,所提出的改进措施能够有效抑制谐波污染,减小电压波动幅度,显著提升系统的电能质量水平。
关键词:电能质量 谐波抑制 有源电力滤波器
Abstract
With the rapid development of modern industry and information technology, the increase of non-linear load in the power system leads to the increasingly prominent problem of power quality, which poses a serious threat to the safe and stable operation of the power grid and the normal work of user equipment. In order to cope with this challenge, this paper aims to improve the power quality of the power system, deeply analyzes the causes and effects of typical power quality problems such as harmonic, voltage fluctuation, flash and three-phase imbalance, and puts forward targeted improvement measures. The study uses theoretical analysis and simulation verification to build the power system model based on MATLAB / Simulink platform, and to quantify the power quality under different working conditions. At the same time, advanced filtering technologies and compensation strategies, such as active power filter (APF) and dynamic voltage recovery device (DVR), are introduced, and the control algorithm is optimized to improve the response speed and compensation accuracy. The results show that the proposed improvement measures can effectively suppress the harmonic pollution, reduce the voltage fluctuation amplitude, and significantly improve the power quality level of the system.
Keyword:Power Quality Harmonic Suppression Active Power Filter
目 录
1绪论 1
1.1电能质量研究的背景与意义 1
1.2国内外电能质量研究现状 1
1.3本文研究方法与技术路线 1
2电能质量问题分析 2
2.1电能质量的基本概念与指标 2
2.2电力系统中常见电能质量问题 2
2.3电能质量问题的成因分析 3
2.4电能质量问题对设备的影响 3
3电能质量监测与评估方法 4
3.1电能质量监测技术概述 4
3.2基于数据驱动的电能质量评估方法 4
3.3电能质量监测系统的构建与应用 5
3.4监测与评估结果的分析与反馈 5
4电能质量改善措施研究 6
4.1改善电能质量的技术手段 6
4.2无功补偿与谐波治理策略 6
4.3智能电网环境下的电能质量优化 7
4.4改善措施的经济性与可行性分析 7
结论 8
参考文献 9
致谢 10
随着现代工业和信息技术的快速发展,电力系统中非线性负荷的增加导致电能质量问题日益突出,这对电网的安全稳定运行及用户设备的正常工作构成了严重威胁。为应对这一挑战,本文以提升电力系统的电能质量为目标,深入分析了谐波、电压波动与闪变、三相不平衡等典型电能质量问题的成因及其影响,并提出了针对性的改善措施。研究采用理论分析与仿真验证相结合的方法,基于MATLAB/Simulink平台构建了电力系统模型,对不同工况下的电能质量进行了量化评估。同时,引入先进的滤波技术和补偿策略,如有源电力滤波器(APF)和动态电压恢复器(DVR),并优化其控制算法以提高响应速度和补偿精度。结果表明,所提出的改进措施能够有效抑制谐波污染,减小电压波动幅度,显著提升系统的电能质量水平。
关键词:电能质量 谐波抑制 有源电力滤波器
Abstract
With the rapid development of modern industry and information technology, the increase of non-linear load in the power system leads to the increasingly prominent problem of power quality, which poses a serious threat to the safe and stable operation of the power grid and the normal work of user equipment. In order to cope with this challenge, this paper aims to improve the power quality of the power system, deeply analyzes the causes and effects of typical power quality problems such as harmonic, voltage fluctuation, flash and three-phase imbalance, and puts forward targeted improvement measures. The study uses theoretical analysis and simulation verification to build the power system model based on MATLAB / Simulink platform, and to quantify the power quality under different working conditions. At the same time, advanced filtering technologies and compensation strategies, such as active power filter (APF) and dynamic voltage recovery device (DVR), are introduced, and the control algorithm is optimized to improve the response speed and compensation accuracy. The results show that the proposed improvement measures can effectively suppress the harmonic pollution, reduce the voltage fluctuation amplitude, and significantly improve the power quality level of the system.
Keyword:Power Quality Harmonic Suppression Active Power Filter
目 录
1绪论 1
1.1电能质量研究的背景与意义 1
1.2国内外电能质量研究现状 1
1.3本文研究方法与技术路线 1
2电能质量问题分析 2
2.1电能质量的基本概念与指标 2
2.2电力系统中常见电能质量问题 2
2.3电能质量问题的成因分析 3
2.4电能质量问题对设备的影响 3
3电能质量监测与评估方法 4
3.1电能质量监测技术概述 4
3.2基于数据驱动的电能质量评估方法 4
3.3电能质量监测系统的构建与应用 5
3.4监测与评估结果的分析与反馈 5
4电能质量改善措施研究 6
4.1改善电能质量的技术手段 6
4.2无功补偿与谐波治理策略 6
4.3智能电网环境下的电能质量优化 7
4.4改善措施的经济性与可行性分析 7
结论 8
参考文献 9
致谢 10